
Steven Levine

Red Hat Enterprise Linux 7
Logical Volume Manager
Administration

LVM Administrator Guide

Red Hat Enterprise Linux 7 Logical Volume Manager Administrat ion

LVM Administrator Guide

Steven Levine
Red Hat Customer Content Services
slevine@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, o r a modified version o f it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor o f this document, waives the right to enforce, and agrees not to assert,
Section 4d o f CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks o f Red Hat, Inc., registered in the United States and o ther
countries.

Linux ® is the registered trademark o f Linus Torvalds in the United States and o ther countries.

Java ® is a registered trademark o f Oracle and/or its affiliates.

XFS ® is a trademark o f Silicon Graphics International Corp. or its subsidiaries in the United
States and/or o ther countries.

MySQL ® is a registered trademark o f MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an o fficial trademark o f Joyent. Red Hat Software Collections is not fo rmally
related to or endorsed by the o fficial Joyent Node.js open source or commercial pro ject.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service
marks or trademarks/service marks o f the OpenStack Foundation, in the United States and o ther
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All o ther trademarks are the property o f their respective owners.

Abstract
This book describes the LVM logical vo lume manager, including information on running LVM in
a clustered environment.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapt er 1 . T he LVM Logical Volume Manager
1.1. New and Chang ed Features
1.2. Lo g ical Vo lumes
1.3. LVM Architecture Overview
1.4. The Clustered Lo g ical Vo lume Manag er (CLVM)
1.5. Do cument Overview

Chapt er 2 . LVM Component s
2.1. Physical Vo lumes
2.2. Vo lume Gro up s
2.3. LVM Lo g ical Vo lumes

Chapt er 3. LVM Administ rat ion Overview
3.1. Creating LVM Vo lumes in a Cluster
3.2. Lo g ical Vo lume Creatio n Overview
3.3. Gro wing a File System o n a Lo g ical Vo lume
3.4. Lo g ical Vo lume Backup
3.5. Lo g g ing
3.6 . The Metad ata Daemo n (lvmetad)
3.7. Disp laying LVM Info rmatio n with the lvm Co mmand

Chapt er 4 . LVM Administ rat ion wit h CLI Commands
4.1. Using CLI Co mmand s
4.2. Physical Vo lume Ad ministratio n
4.3. Vo lume Gro up Ad ministratio n
4.4. Lo g ical Vo lume Ad ministratio n
4.5. Co ntro ll ing LVM Device Scans with Filters
4.6 . Online Data Relo catio n
4.7. Activating Lo g ical Vo lumes o n Ind ivid ual No d es in a Cluster
4.8 . Custo mized Rep o rting fo r LVM

Chapt er 5. LVM Configurat ion Examples
5.1. Creating an LVM Lo g ical Vo lume o n Three Disks
5.2. Creating a Strip ed Lo g ical Vo lume
5.3. Sp litting a Vo lume Gro up
5.4. Remo ving a Disk fro m a Lo g ical Vo lume
5.5. Creating a Mirro red LVM Lo g ical Vo lume in a Cluster

Chapt er 6 . LVM T roubleshoot ing
6 .1. Tro ub lesho o ting Diag no stics
6 .2. Disp laying Info rmatio n o n Failed Devices
6 .3. Reco vering fro m LVM Mirro r Failure
6 .4. Reco vering Physical Vo lume Metad ata
6 .5. Rep lacing a Missing Physical Vo lume
6 .6 . Remo ving Lo st Physical Vo lumes fro m a Vo lume Gro up
6 .7. Insuffic ient Free Extents fo r a Lo g ical Vo lume
6 .8 . Dup licate PV Warning s fo r Multip athed Devices

Appendix A. T he Device Mapper
A.1. Device Tab le Map p ing s
A.2. The d msetup Co mmand
A.3. Device Map p er Sup p o rt fo r the ud ev Device Manag er

Appendix B. T he LVM Configurat ion Files

3
3
4
5
6
7

9
9

10
11

1 8
18
19
20
20
20
21
21

2 3
23
24
27
35
8 1
8 2
8 3
8 3

9 6
9 6
9 7
9 8

10 0
10 2

1 0 6
10 6
10 6
10 7
110
112
112
112
113

1 1 6
116
126
130

1 34

T able of Cont ent s

1

. .

. .

. .

. .

. .

. .

Appendix B. T he LVM Configurat ion Files
B.1. The LVM Co nfig uratio n Files
B.2. The lvmco nfig Co mmand
B.3. LVM Pro fi les
B.4. Samp le lvm.co nf File

Appendix C. LVM Select ion Crit eria
C.1. Selectio n Criteria Field Typ es
C.2. Selectio n Criteria Op erato rs
C.3. Selectio n Criteria Field s
C.4. Sp ecifying Time Values
C.5. Selectio n Criteria Disp lay Examp les
C.6 . Selectio n Criteria Pro cessing Examp les

Appendix D. LVM Object T ags
D.1. Ad d ing and Remo ving Ob ject Tag s
D.2. Ho st Tag s
D.3. Co ntro ll ing Activatio n with Tag s

Appendix E. LVM Volume Group Met adat a
E.1. The Physical Vo lume Lab el
E.2. Metad ata Co ntents
E.3. Samp le Metad ata

Appendix F. Revision Hist ory

Index

1 34
134
134
135
136

1 7 5
175
176
177
18 5
18 6
18 9

1 9 1
19 1
19 1
19 2

1 9 3
19 3
19 3
19 4

1 9 7

1 9 7

Logical Volume Manager Administ rat ion

2

Chapter 1. The LVM Logical Volume Manager

This chapter provides a summary of the features of the LVM logical volume manager that are new
since the initial release of Red Hat Enterprise Linux 7. This chapter also provides a high-level
overview of the components of the Logical Volume Manager (LVM).

1.1. New and Changed Features

This section lists features of the LVM logical volume manager that are new since the initial release of
Red Hat Enterprise Linux 7.

1.1.1. New and Changed Features for Red Hat Enterprise Linux 7.1

Red Hat Enterprise Linux 7.1 includes the following documentation and feature updates and
changes.

The documentation for thinly-provisioned volumes and thinly-provisioned snapshots has been
clarified. Additional information about LVM thin provisioning is now provided in the lvmthin(7)
man page. For general information on thinly-provisioned logical volumes, refer to Section 2.3.4,
“Thinly-Provisioned Logical Volumes (Thin Volumes)” . For information For information on thinly-
provisioned snapshot volumes, refer to Section 2.3.6, “Thinly-Provisioned Snapshot Volumes” .

This manual now documents the lvm dumpconfig command in Section B.2, “The lvmconfig
Command” . Note that as of the Red Hat Enterprise Linux 7.2 release, this command was renamed
lvmconfig , although the old format continues to work.

This manual now documents LVM profiles in Section B.3, “LVM Profiles” .

This manual now documents the lvm command in Section 3.7, “Displaying LVM Information with
the lvm Command” .

In the Red Hat Enterprise Linux 7.1 release, you can control activation of thin pool snapshots with
the -k and -K options of the lvcreate and lvchange command, as documented in
Section 4.4.18, “Controlling Logical Volume Activation” .

This manual documents the --force argument of the vgimport command. This allows you to
import volume groups that are missing physical volumes and subsequently run the vgreduce -
-removemissing command. For information on the vgimport command, refer to
Section 4.3.15, “Moving a Volume Group to Another System” .

This manual documents the --mirrorsonly argument of the vgreduce command. This allows
you remove only the logical volumes that are mirror images from a physical volume that has
failed. For information on using this option, refer to Section 4.3.15, “Moving a Volume Group to
Another System” .

In addition, small technical corrections and clarifications have been made throughout the document.

1.1.2. New and Changed Features for Red Hat Enterprise Linux 7.2

Red Hat Enterprise Linux 7.2 includes the following documentation and feature updates and
changes.

Many LVM processing commands now accept the -S or --select option to define selection
criteria for those commands. LVM selection criteria are documented in the new appendix
Appendix C, LVM Selection Criteria.

Chapt er 1 . T he LVM Logical Volume Manager

3

This document provides basic procedures for creating cache logical volumes in Section 4.4.8,
“Creating LVM Cache Logical Volumes” .

The troubleshooting chapter of this document includes a new section, Section 6.8, “Duplicate PV
Warnings for Multipathed Devices” .

As of the Red Hat Enterprise Linux 7.2 release, the lvm dumpconfig command was renamed
lvmconfig , although the old format continues to work. This change is reflected throughout this
document.

In addition, small technical corrections and clarifications have been made throughout the document.

1.1.3. New and Changed Features for Red Hat Enterprise Linux 7.3

Red Hat Enterprise Linux 7.3 includes the following documentation and feature updates and
changes.

LVM supports RAID0 segment types. RAID0 spreads logical volume data across multiple data
subvolumes in units of stripe size. For information on creating RAID0 volumes, see
Section 4.4.3.1, “Creating RAID0 Volumes (Red Hat Enterprise Linux 7.3 and Later)” .

You can report information about physical volumes, volume groups, logical volumes, physical
volume segments, and logical volume segments all at once with the lvm fullreport command.
For information on this command and its capabilities, see the lvm-fullreport(8) man page.

LVM supports log reports, which contain a log of operations, messages, and per-object status
with complete object identification collected during LVM command execution. For an example of
an LVM log report, see Section 4.8.6, “Command Log Reporting (Red Hat Enterprise Linux 7.3 and
later)” . For further information about the LVM log report. see the lvmreport(7) man page.

You can use the --reportformat option of the LVM display commands to display the output in
JSON format. For an example of output displayed in JSON format, see Section 4.8.5, “ JSON
Format Output (Red Hat Enterprise Linux 7.3 and later)” .

You can now configure your system to track thin snapshot and thin logical volumes that have
been removed by enabling the record_lvs_history metadata option in the lvm.conf
configuration file. This allows you to display a full thin snapshot dependency chain that includes
logical volumes that have been removed from the original dependency chain and have become
historical logical volumes. For information on historical logical volumes, see Section 4.4.19,
“Tracking and Displaying Historical Logical Volumes (Red Hat Enterprise Linux 7.3 and Later)” .

In addition, small technical corrections and clarifications have been made throughout the document.

1.1.4 . New and Changed Features for Red Hat Enterprise Linux 7.4

Red Hat Enterprise Linux 7.4 includes the following documentation and feature updates and
changes.

Red Hat Enterprise Linux 7.4 provides support for RAID takeover and RAID reshaping. For a
summary of these features, see Section 4.4.3.12, “RAID Takeover (Red Hat Enterprise Linux 7.4
and Later)” and Section 4.4.3.13, “Reshaping a RAID Logical Volume (Red Hat Enterprise Linux
7.4 and Later)” .

1.2. Logical Volumes

Volume management creates a layer of abstraction over physical storage, allowing you to create
logical storage volumes. This provides much greater flexibility in a number of ways than using

Logical Volume Manager Administ rat ion

4

physical storage directly. With a logical volume, you are not restricted to physical disk sizes. In
addition, the hardware storage configuration is hidden from the software so it can be resized and
moved without stopping applications or unmounting file systems. This can reduce operational costs.

Logical volumes provide the following advantages over using physical storage directly:

Flexible capacity

When using logical volumes, file systems can extend across multiple disks, since you can
aggregate disks and partitions into a single logical volume.

Resizeable storage pools

You can extend logical volumes or reduce logical volumes in size with simple software
commands, without reformatting and repartitioning the underlying disk devices.

Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data while your
system is active. Data can be rearranged on disks while the disks are in use. For example, you
can empty a hot-swappable disk before removing it.

Convenient device naming

Logical storage volumes can be managed in user-defined and custom named groups.

Disk striping

You can create a logical volume that stripes data across two or more disks. This can dramatically
increase throughput.

Mirroring volumes

Logical volumes provide a convenient way to configure a mirror for your data.

Volume Snapshots

Using logical volumes, you can take device snapshots for consistent backups or to test the effect
of changes without affecting the real data.

The implementation of these features in LVM is described in the remainder of this document.

1.3. LVM Architecture Overview

Note

LVM2 is backwards compatible with LVM1, with the exception of snapshot and cluster support.
You can convert a volume group from LVM1 format to LVM2 format with the vgconvert
command. For information on converting LVM metadata format, see the vgconvert(8) man
page.

The underlying physical storage unit of an LVM logical volume is a block device such as a partition
or whole disk. This device is initialized as an LVM physical volume (PV).

Chapt er 1 . T he LVM Logical Volume Manager

5

To create an LVM logical volume, the physical volumes are combined into a volume group (VG). This
creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated. This process
is analogous to the way in which disks are divided into partitions. A logical volume is used by file
systems and applications (such as databases).

Figure 1.1, “LVM Logical Volume Components” shows the components of a simple LVM logical
volume:

Figure 1.1. LVM Logical Volume Components

For detailed information on the components of an LVM logical volume, see Chapter 2, LVM
Components.

1.4 . The Clustered Logical Volume Manager (CLVM)

The Clustered Logical Volume Manager (CLVM) is a set of clustering extensions to LVM. These
extensions allow a cluster of computers to manage shared storage (for example, on a SAN) using
LVM. CLVM is part of the Resilient Storage Add-On.

Whether you should use CLVM depends on your system requirements:

If only one node of your system requires access to the storage you are configuring as logical
volumes, then you can use LVM without the CLVM extensions and the logical volumes created with
that node are all local to the node. Additionally, if you are using a clustered system for failover
where only a single node that accesses the storage is active at any one time, then you can also
use LVM without the CLVM extensions. When configuring logical volumes in a cluster that will not
require the CLVM extensions, you configure your system with the LVM high availability resource
agent. For information on configuring resources in a cluster, see the High Availability Add-On
Reference.

If more than one node of your cluster will require access to your storage which is then shared
among the active nodes, then you must use CLVM. CLVM allows a user to configure logical
volumes on shared storage by locking access to physical storage while a logical volume is being

Logical Volume Manager Administ rat ion

6

configured. LVM uses clustered locking services to manage the shared storage. When configuring
logical volumes in a cluster that will require the CLVM extensions, you configure your system with
a clvm resource agent. For information on configuring resources in a cluster, see the High
Availability Add-On Reference.

In order to use CLVM, the High Availability Add-On and Resilient Storage Add-On software, including
the clvmd daemon, must be running. The clvmd daemon is the key clustering extension to LVM. The
clvmd daemon runs in each cluster computer and distributes LVM metadata updates in a cluster,
presenting each cluster computer with the same view of the logical volumes.

Figure 1.2, “CLVM Overview” shows a CLVM overview in a cluster.

Figure 1.2. CLVM Overview

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical
volumes are supported only in conjunction with Pacemaker clusters, and must be configured as
cluster resources. For information on configuring LVM volumes in a cluster, see Section 3.1,
“Creating LVM Volumes in a Cluster” .

1.5. Document Overview

This document includes the following chapters:

Chapter 2, LVM Components describes the components that make up an LVM logical volume.

Chapter 3, LVM Administration Overview provides an overview of the basic steps you perform to
configure LVM logical volumes.

Chapt er 1 . T he LVM Logical Volume Manager

7

Chapter 4, LVM Administration with CLI Commands summarizes the individual administrative tasks
you can perform with the LVM CLI commands to create and maintain logical volumes.

Chapter 5, LVM Configuration Examples provides a variety of LVM configuration examples.

Chapter 6, LVM Troubleshooting provides instructions for troubleshooting a variety of LVM issues.

Appendix A, The Device Mapper describes the Device Mapper that LVM uses to map logical and
physical volumes.

Appendix B, The LVM Configuration Files describes the LVM configuration files.

Appendix D, LVM Object Tags describes LVM object tags and host tags.

Appendix E, LVM Volume Group Metadata describes LVM volume group metadata, and includes a
sample copy of metadata for an LVM volume group.

Logical Volume Manager Administ rat ion

8

Chapter 2. LVM Components

This chapter describes the components of an LVM Logical volume.

2.1. Physical Volumes

The underlying physical storage unit of an LVM logical volume is a block device such as a partition
or whole disk. To use the device for an LVM logical volume, the device must be initialized as a
physical volume (PV). Initializing a block device as a physical volume places a label near the start of
the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default by
placing the label on any of the first 4 sectors when you create the physical volume. This allows LVM
volumes to co-exist with other users of these sectors, if necessary.

An LVM label provides correct identification and device ordering for a physical device, since devices
can come up in any order when the system is booted. An LVM label remains persistent across reboots
and throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique identifier
(the UUID) for the physical volume. It also stores the size of the block device in bytes, and it records
where the LVM metadata will be stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your system. By
default, an identical copy of the metadata is maintained in every metadata area in every physical
volume within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1 or 2 identical copies of its metadata on each physical volume.
The default is 1 copy. Once you configure the number of metadata copies on the physical volume,
you cannot change that number at a later time. The first copy is stored at the start of the device,
shortly after the label. If there is a second copy, it is placed at the end of the device. If you
accidentally overwrite the area at the beginning of your disk by writing to a different disk than you
intend, a second copy of the metadata at the end of the device will allow you to recover the metadata.

For detailed information about the LVM metadata and changing the metadata parameters, see
Appendix E, LVM Volume Group Metadata.

2.1.1. LVM Physical Volume Layout

Figure 2.1, “Physical Volume layout” shows the layout of an LVM physical volume. The LVM label is
on the second sector, followed by the metadata area, followed by the usable space on the device.

Note

In the Linux kernel (and throughout this document), sectors are considered to be 512 bytes in
size.

Chapt er 2 . LVM Component s

9

Figure 2.1. Physical Volume layout

2.1.2. Mult iple Part it ions on a Disk

LVM allows you to create physical volumes out of disk partitions. Red Hat recommends that you
create a single partition that covers the whole disk to label as an LVM physical volume for the
following reasons:

Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once. This
becomes particularly true if a disk fails. In addition, multiple physical volumes on a single disk
may cause a kernel warning about unknown partition types at boot.

Striping performance

LVM cannot tell that two physical volumes are on the same physical disk. If you create a striped
logical volume when two physical volumes are on the same physical disk, the stripes could be on
different partitions on the same disk. This would result in a decrease in performance rather than
an increase.

Although it is not recommended, there may be specific circumstances when you will need to divide a
disk into separate LVM physical volumes. For example, on a system with few disks it may be
necessary to move data around partitions when you are migrating an existing system to LVM
volumes. Additionally, if you have a very large disk and want to have more than one volume group
for administrative purposes then it is necessary to partition the disk. If you do have a disk with more
than one partition and both of those partitions are in the same volume group, take care to specify
which partitions are to be included in a logical volume when creating striped volumes.

2.2. Volume Groups

Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out of
which logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size
called extents. An extent is the smallest unit of space that can be allocated. Within a physical volume,
extents are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The extent
size is thus the same for all logical volumes in the volume group. The volume group maps the logical
extents to physical extents.

Logical Volume Manager Administ rat ion

10

2.3. LVM Logical Volumes

In LVM, a volume group is divided up into logical volumes. The following sections describe the
different types of logical volumes.

2.3.1. Linear Volumes

A linear volume aggregates space from one or more physical volumes into one logical volume. For
example, if you have two 60GB disks, you can create a 120GB logical volume. The physical storage
is concatenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in order.
For example, as shown in Figure 2.2, “Extent Mapping” logical extents 1 to 99 could map to one
physical volume and logical extents 100 to 198 could map to a second physical volume. From the
point of view of the application, there is one device that is 198 extents in size.

Figure 2.2. Extent Mapping

The physical volumes that make up a logical volume do not have to be the same size. Figure 2.3,
“Linear Volume with Unequal Physical Volumes” shows volume group VG1 with a physical extent
size of 4MB. This volume group includes 2 physical volumes named PV1 and PV2. The physical
volumes are divided into 4MB units, since that is the extent size. In this example, PV1 is 200 extents

Chapt er 2 . LVM Component s

11

in size (800MB) and PV2 is 100 extents in size (400MB). You can create a linear volume any size
between 1 and 300 extents (4MB to 1200MB). In this example, the linear volume named LV1 is 300
extents in size.

Figure 2.3. Linear Volume with Unequal Physical Volumes

You can configure more than one linear logical volume of whatever size you require from the pool of
physical extents. Figure 2.4, “Multiple Logical Volumes” shows the same volume group as in
Figure 2.3, “Linear Volume with Unequal Physical Volumes” , but in this case two logical volumes
have been carved out of the volume group: LV1, which is 250 extents in size (1000MB) and LV2
which is 50 extents in size (200MB).

Figure 2.4 . Mult ip le Logical Volumes

Logical Volume Manager Administ rat ion

12

2.3.2. St riped Logical Volumes

When you write data to an LVM logical volume, the file system lays the data out across the underlying
physical volumes. You can control the way the data is written to the physical volumes by creating a
striped logical volume. For large sequential reads and writes, this can improve the efficiency of the
data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes in
round-robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in
near-linear performance gain for each additional physical volume in the stripe.

The following illustration shows data being striped across three physical volumes. In this figure:

the first stripe of data is written to the first physical volume

the second stripe of data is written to the second physical volume

the third stripe of data is written to the third physical volume

the fourth stripe of data is written to the first physical volume

In a striped logical volume, the size of the stripe cannot exceed the size of an extent.

Figure 2.5. St rip ing Data Across Three PVs

Striped logical volumes can be extended by concatenating another set of devices onto the end of the
first set. In order to extend a striped logical volume, however, there must be enough free space on the

Chapt er 2 . LVM Component s

13

set of underlying physical volumes that make up the volume group to support the stripe. For example,
if you have a two-way stripe that uses up an entire volume group, adding a single physical volume to
the volume group will not enable you to extend the stripe. Instead, you must add at least two physical
volumes to the volume group. For more information on extending a striped volume, see
Section 4.4.16.1, “Extending a Striped Volume” .

2.3.3. RAID Logical Volumes

LVM supports RAID0/1/4/5/6/10. An LVM RAID volume has the following characteristics:

RAID logical volumes created and managed by means of LVM leverage the MD kernel drivers.

RAID1 images can be temporarily split from the array and merged back into the array later.

LVM RAID volumes support snapshots.

For information on creating RAID logical volumes, see Section 4.4.3, “RAID Logical Volumes” .

Note

RAID logical volumes are not cluster-aware. While RAID logical volumes can be created and
activated exclusively on one machine, they cannot be activated simultaneously on more than
one machine. If you require non-exclusive mirrored volumes, you must create the volumes with
a mirror segment type, as described in Section 4.4.4, “Creating Mirrored Volumes” .

2.3.4 . T hinly-Provisioned Logical Volumes (T hin Volumes)

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger
than the available extents. Using thin provisioning, you can manage a storage pool of free space,
known as a thin pool, which can be allocated to an arbitrary number of devices when needed by
applications. You can then create devices that can be bound to the thin pool for later allocation
when an application actually writes to the logical volume. The thin pool can be expanded
dynamically when needed for cost-effective allocation of storage space.

Note

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin
volumes must be exclusively activated on only one cluster node.

By using thin provisioning, a storage administrator can overcommit the physical storage, often
avoiding the need to purchase additional storage. For example, if ten users each request a 100GB
file system for their application, the storage administrator can create what appears to be a 100GB file
system for each user but which is backed by less actual storage that is used only when needed.
When using thin provisioning, it is important that the storage administrator monitor the storage pool
and add more capacity if it starts to become full.

To make sure that all available space can be used, LVM supports data discard. This allows for re-
use of the space that was formerly used by a discarded file or other block range.

For information on creating thin volumes, refer to Section 4.4.5, “Creating Thinly-Provisioned Logical
Volumes” .

Logical Volume Manager Administ rat ion

14

Thin volumes provide support for a new implementation of copy-on-write (COW) snapshot logical
volumes, which allow many virtual devices to share the same data in the thin pool. For information
on thin snapshot volumes, refer to Section 2.3.6, “Thinly-Provisioned Snapshot Volumes” .

2.3.5. Snapshot Volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular
instant without causing a service interruption. When a change is made to the original device (the
origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area as it
was prior to the change so that it can reconstruct the state of the device.

Note

LVM supports thinly-provisioned snapshots. For information on thinly provisioned snapshot
volumes, refer to Section 2.3.6, “Thinly-Provisioned Snapshot Volumes” .

Note

LVM snapshots are not supported across the nodes in a cluster. You cannot create a
snapshot volume in a clustered volume group.

Because a snapshot copies only the data areas that change after the snapshot is created, the
snapshot feature requires a minimal amount of storage. For example, with a rarely updated origin, 3-
5 % of the origin's capacity is sufficient to maintain the snapshot.

Note

Snapshot copies of a file system are virtual copies, not an actual media backup for a file
system. Snapshots do not provide a substitute for a backup procedure.

The size of the snapshot governs the amount of space set aside for storing the changes to the origin
volume. For example, if you made a snapshot and then completely overwrote the origin the snapshot
would have to be at least as big as the origin volume to hold the changes. You need to dimension a
snapshot according to the expected level of change. So for example a short-lived snapshot of a
read-mostly volume, such as /usr, would need less space than a long-lived snapshot of a volume
that sees a greater number of writes, such as /home.

If a snapshot runs full, the snapshot becomes invalid, since it can no longer track changes on the
origin volume. You should regularly monitor the size of the snapshot. Snapshots are fully resizable,
however, so if you have the storage capacity you can increase the size of the snapshot volume to
prevent it from getting dropped. Conversely, if you find that the snapshot volume is larger than you
need, you can reduce the size of the volume to free up space that is needed by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible. If a
chunk on a snapshot is changed, that chunk is marked and never gets copied from the original
volume.

There are several uses for the snapshot feature:

Chapt er 2 . LVM Component s

15

Most typically, a snapshot is taken when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

You can execute the fsck command on a snapshot file system to check the file system integrity
and determine whether the original file system requires file system repair.

Because the snapshot is read/write, you can test applications against production data by taking
a snapshot and running tests against the snapshot, leaving the real data untouched.

You can create LVM volumes for use with Red Hat Virtualization. LVM snapshots can be used to
create snapshots of virtual guest images. These snapshots can provide a convenient way to
modify existing guests or create new guests with minimal additional storage. For information on
creating LVM-based storage pools with Red Hat Virtualization, see the Virtualization Administration
Guide.

For information on creating snapshot volumes, see Section 4.4.6, “Creating Snapshot Volumes” .

You can use the --merge option of the lvconvert command to merge a snapshot into its origin
volume. One use for this feature is to perform system rollback if you have lost data or files or
otherwise need to restore your system to a previous state. After you merge the snapshot volume, the
resulting logical volume will have the origin volume's name, minor number, and UUID and the
merged snapshot is removed. For information on using this option, see Section 4.4.9, “Merging
Snapshot Volumes” .

2.3.6. T hinly-Provisioned Snapshot Volumes

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. Thin snapshot
volumes allow many virtual devices to be stored on the same data volume. This simplifies
administration and allows for the sharing of data between snapshot volumes.

As for all LVM snapshot volumes, as well as all thin volumes, thin snapshot volumes are not
supported across the nodes in a cluster. The snapshot volume must be exclusively activated on only
one cluster node.

Thin snapshot volumes provide the following benefits:

A thin snapshot volume can reduce disk usage when there are multiple snapshots of the same
origin volume.

If there are multiple snapshots of the same origin, then a write to the origin will cause one COW
operation to preserve the data. Increasing the number of snapshots of the origin should yield no
major slowdown.

Thin snapshot volumes can be used as a logical volume origin for another snapshot. This allows
for an arbitrary depth of recursive snapshots (snapshots of snapshots of snapshots...).

A snapshot of a thin logical volume also creates a thin logical volume. This consumes no data
space until a COW operation is required, or until the snapshot itself is written.

A thin snapshot volume does not need to be activated with its origin, so a user may have only the
origin active while there are many inactive snapshot volumes of the origin.

When you delete the origin of a thinly-provisioned snapshot volume, each snapshot of that origin
volume becomes an independent thinly-provisioned volume. This means that instead of merging
a snapshot with its origin volume, you may choose to delete the origin volume and then create a
new thinly-provisioned snapshot using that independent volume as the origin volume for the new
snapshot.

Logical Volume Manager Administ rat ion

16

Although there are many advantages to using thin snapshot volumes, there are some use cases for
which the older LVM snapshot volume feature may be more appropriate to your needs:

You cannot change the chunk size of a thin pool. If the thin pool has a large chunk size (for
example, 1MB) and you require a short-living snapshot for which a chunk size that large is not
efficient, you may elect to use the older snapshot feature.

You cannot limit the size of a thin snapshot volume; the snapshot will use all of the space in the
thin pool, if necessary. This may not be appropriate for your needs.

In general, you should consider the specific requirements of your site when deciding which snapshot
format to use.

For information on configuring thin snapshot volumes, refer to Section 4.4.7, “Creating Thinly-
Provisioned Snapshot Volumes” .

2.3.7. Cache Volumes

As of the Red Hat Enterprise Linux 7.1 release, LVM supports the use of fast block devices (such as
SSD drives) as write-back or write-through caches for larger slower block devices. Users can create
cache logical volumes to improve the performance of their existing logical volumes or create new
cache logical volumes composed of a small and fast device coupled with a large and slow device.

For information on creating LVM cache volumes, see Section 4.4.8, “Creating LVM Cache Logical
Volumes” .

Chapt er 2 . LVM Component s

17

Chapter 3. LVM Administration Overview

This chapter provides an overview of the administrative procedures you use to configure LVM logical
volumes. This chapter is intended to provide a general understanding of the steps involved. For
specific step-by-step examples of common LVM configuration procedures, see Chapter 5, LVM
Configuration Examples.

For descriptions of the CLI commands you can use to perform LVM administration, see Chapter 4,
LVM Administration with CLI Commands.

3.1. Creat ing LVM Volumes in a Cluster

To create logical volumes in a cluster environment, you use the Clustered Logical Volume Manager
(CLVM), which is a set of clustering extensions to LVM. These extensions allow a cluster of computers
to manage shared storage (for example, on a SAN) using LVM.

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical
volumes are supported only in conjunction with Pacemaker clusters, and must be configured as
cluster resources.

The following procedure provides an overview of the steps required to configure clustered LVM
volumes as cluster resources.

1. Install the cluster software and LVM packages, start the cluster software, and create the
cluster. You must configure fencing for the cluster. The document High Availability Add-On
Administration provides a sample procedure for creating a cluster and configuring fencing for
the nodes in the cluster. The document High Availability Add-On Reference provides more
detailed information about the components of cluster configuration.

2. CLVM requires each node's /etc/lvm/lvm.conf file to have cluster locking enabled. As
root, you can use the lvmconf --enable-cluster command to enable cluster locking.
Executing this command changes the locking type and disables the lvmetad daemon. For
information on the lvmetad daemon, see Section 3.6, “The Metadata Daemon (lvmetad)” .

Information on configuring the lvm.conf file manually to support clustered locking is
provided within the lvm.conf file itself. For information about the lvm.conf file, see
Appendix B, The LVM Configuration Files.

3. Set up a dlm resource for the cluster. You create the resource as a cloned resource so that it
will run on every node in the cluster.

pcs resource create dlm ocf:pacemaker:controld op monitor
interval=30s on-fail=fence clone interleave=true ordered=true

4. Configure clvmd as a cluster resource. Just as for the dlm resource, you create the resource
as a cloned resource so that it will run on every node in the cluster.

pcs resource create clvmd ocf:heartbeat:clvm op monitor
interval=30s on-fail=fence clone interleave=true ordered=true

5. Set up clvmd and dlm dependency and start up order. clvmd must start after dlm and must
run on the same node as dlm.

pcs constraint order start dlm-clone then clvmd-clone
pcs constraint colocation add clvmd-clone with dlm-clone

Logical Volume Manager Administ rat ion

18

6. Create the clustered logical volume. Creating LVM logical volumes in a cluster environment is
identical to creating LVM logical volumes on a single node. There is no difference in the LVM
commands themselves. In order to enable the LVM volumes you are creating in a cluster, the
cluster infrastructure must be running and the cluster must be quorate.

By default, logical volumes created with CLVM on shared storage are visible to all systems that have
access to the shared storage. It is possible to create volume groups in which all of the storage
devices are visible to only one node in the cluster. It is also possible to change the status of a volume
group from a local volume group to a clustered volume group. For information, see Section 4.3.3,
“Creating Volume Groups in a Cluster” and Section 4.3.9, “Changing the Parameters of a Volume
Group”

Warning

When you create volume groups with CLVM on shared storage, you must ensure that all nodes
in the cluster have access to the physical volumes that constitute the volume group.
Asymmetric cluster configurations in which some nodes have access to the storage and others
do not are not supported.

For an example of creating a mirrored logical volume in a cluster, see Section 5.5, “Creating a
Mirrored LVM Logical Volume in a Cluster” .

3.2. Logical Volume Creat ion Overview

The following is a summary of the steps to perform to create an LVM logical volume.

1. Initialize the partitions you will use for the LVM volume as physical volumes (this labels them).

2. Create a volume group.

3. Create a logical volume.

After creating the logical volume you can create and mount the file system. The examples in this
document use GFS2 file systems.

1. Create a GFS2 file system on the logical volume with the mkfs.gfs2 command.

2. Create a new mount point with the mkdir command. In a clustered system, create the mount
point on all nodes in the cluster.

3. Mount the file system. You may want to add a line to the fstab file for each node in the
system.

Note

Although a GFS2 file system can be implemented in a standalone system or as part of a
cluster configuration, for the Red Hat Enterprise Linux 7 release Red Hat does not support the
use of GFS2 as a single-node file system. Red Hat will continue to support single-node GFS2
file systems for mounting snapshots of cluster file systems (for example, for backup purposes).

Chapt er 3. LVM Administ rat ion Overview

19

Creating the LVM volume is machine independent, since the storage area for LVM setup information is
on the physical volumes and not the machine where the volume was created. Servers that use the
storage have local copies, but can recreate that from what is on the physical volumes. You can
attach physical volumes to a different server if the LVM versions are compatible.

3.3. Growing a File System on a Logical Volume

To grow a file system on a logical volume, perform the following steps:

1. Determine whether there is sufficient unallocated space in the existing volume group to
extend the logical volume. If not, perform the following procedure:

a. Create a new physical volume with the pvcreate command.

b. Use the vgextend command to extend the volume group that contains the logical
volume with the file system you are growing to include the new physical volume.

2. Once the volume group is large enough to include the larger file system, extend the logical
volume with the lvresize command.

3. Resize the file system on the logical volume.

Note that you can use the -r option of the lvresize command to extend the logical volume and
resize the underlying file system with a single command

3.4 . Logical Volume Backup

Metadata backups and archives are automatically created whenever there is a configuration change
for a volume group or logical volume, unless this feature is disabled in the lvm.conf file. By default,
the metadata backup is stored in the /etc/lvm/backup file and the metadata archives are stored in
the /etc/lvm/archive file. How long the metadata archives stored in the /etc/lvm/archive file
are kept and how many archive files are kept is determined by parameters you can set in the
lvm.conf file. A daily system backup should include the contents of the /etc/lvm directory in the
backup.

Note that a metadata backup does not back up the user and system data contained in the logical
volumes.

You can manually back up the metadata to the /etc/lvm/backup file with the vgcfgbackup
command. You can restore metadata with the vgcfgrestore command. The vgcfgbackup and
vgcfgrestore commands are described in Section 4.3.13, “Backing Up Volume Group Metadata” .

3.5. Logging

All message output passes through a logging module with independent choices of logging levels for:

standard output/error

syslog

log file

external log function

The logging levels are set in the /etc/lvm/lvm.conf file, which is described in Appendix B, The
LVM Configuration Files.

Logical Volume Manager Administ rat ion

20

3.6. The Metadata Daemon (lvmetad)

LVM can optionally use a central metadata cache, implemented through a daemon (lvmetad) and a
udev rule. The metadata daemon has two main purposes: it improves performance of LVM
commands and it allows udev to automatically activate logical volumes or entire volume groups as
they become available to the system.

LVM is configured to make use of the daemon when the global/use_lvmetad variable is set to 1
in the lvm.conf configuration file. This is the default value. For information on the lvm.conf
configuration file, refer to Appendix B, The LVM Configuration Files.

Note

The lvmetad daemon is not currently supported across the nodes of a cluster, and requires
that the locking type be local file-based locking. When you use the lvmconf --enable-
cluster/--disable-cluster command, the lvm.conf file is configured appropriately,
including the use_lvmetad setting (which should be 0 for locking_type=3).

If you change the value of use_lvmetad from 1 to 0, you must reboot or stop the lvmetad service
manually with the following command.

systemctl stop lvm2-lvmetad.service

Normally, each LVM command issues a disk scan to find all relevant physical volumes and to read
volume group metadata. However, if the metadata daemon is running and enabled, this expensive
scan can be skipped. Instead, the lvmetad daemon scans each device only once, when it becomes
available, using udev rules. This can save a significant amount of I/O and reduce the time required
to complete LVM operations, particularly on systems with many disks.

When a new volume group is made available at runtime (for example, through hotplug or iSCSI), its
logical volumes must be activated in order to be used. When the lvmetad daemon is enabled, the
activation/auto_activation_volume_list option in the lvm.conf configuration file can
be used to configure a list of volume groups or logical volumes (or both) that should be
automatically activated. Without the lvmetad daemon, a manual activation is necessary.

Note

When the lvmetad daemon is running, the filter = setting in the /etc/lvm/lvm.conf
file does not apply when you execute the pvscan --cache device command. To filter
devices, you need to use the global_filter = setting. Devices that fail the global filter are
not opened by LVM and are never scanned. You may need to use a global filter, for example,
when you use LVM devices in VMs and you do not want the contents of the devices in the VMs
to be scanned by the physical host.

3.7. Displaying LVM Informat ion with the lvm Command

The lvm command provides several built-in options that you can use to display information about
LVM support and configuration.

lvm devtypes

Chapt er 3. LVM Administ rat ion Overview

21

Displays the recognized build-in block device types (Red Hat Enterprise Linux release 6.6 and
later).

lvm formats

Displays recognizes metadata formats.

lvm help

Displays LVM help text.

lvm segtypes

Displays recognized logical volume segment types.

lvm tags

Displays any tags defined on this host. For information on LVM object tags, see Appendix D, LVM
Object Tags.

lvm version

Displays the current version information.

Logical Volume Manager Administ rat ion

22

Chapter 4. LVM Administration with CLI Commands

This chapter summarizes the individual administrative tasks you can perform with the LVM Command
Line Interface (CLI) commands to create and maintain logical volumes.

Note

If you are creating or modifying an LVM volume for a clustered environment, you must ensure
that you are running the clvmd daemon. For information, see Section 3.1, “Creating LVM
Volumes in a Cluster” .

In addition to the LVM Command Line Interface (CLI), you can use System Storage Manager (SSM) to
configure LVM logical volumes. For information on using SSM with LVM, see the Storage Administration
Guide.

4.1. Using CLI Commands

There are several general features of all LVM CLI commands.

When sizes are required in a command line argument, units can always be specified explicitly. If you
do not specify a unit, then a default is assumed, usually KB or MB. LVM CLI commands do not accept
fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m is
equivalent, for example, and powers of 2 (multiples of 1024) are used. However, when specifying the
--units argument in a command, lower-case indicates that units are in multiples of 1024 while
upper-case indicates that units are in multiples of 1000.

Where commands take volume group or logical volume names as arguments, the full path name is
optional. A logical volume called lvol0 in a volume group called vg0 can be specified as
vg0/lvol0 . Where a list of volume groups is required but is left empty, a list of all volume groups
will be substituted. Where a list of logical volumes is required but a volume group is given, a list of all
the logical volumes in that volume group will be substituted. For example, the lvdisplay vg0
command will display all the logical volumes in volume group vg0 .

All LVM commands accept a -v argument, which can be entered multiple times to increase the output
verbosity. For example, the following examples shows the default output of the lvcreate command.

lvcreate -L 50MB new_vg
 Rounding up size to full physical extent 52.00 MB
 Logical volume "lvol0" created

The following command shows the output of the lvcreate command with the -v argument.

lvcreate -v -L 50MB new_vg
 Finding volume group "new_vg"
 Rounding up size to full physical extent 52.00 MB
 Archiving volume group "new_vg" metadata (seqno 4).
 Creating logical volume lvol0
 Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
 Found volume group "new_vg"
 Creating new_vg-lvol0
 Loading new_vg-lvol0 table

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

23

 Resuming new_vg-lvol0 (253:2)
 Clearing start of logical volume "lvol0"
 Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
 Logical volume "lvol0" created

You could also have used the -vv, -vvv or the -vvvv argument to display increasingly more details
about the command execution. The -vvvv argument provides the maximum amount of information at
this time. The following example shows only the first few lines of output for the lvcreate command
with the -vvvv argument specified.

lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:913 Processing: lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:916 O_DIRECT will be used
#config/config.c:864 Setting global/locking_type to 1
#locking/locking.c:138 File-based locking selected.
#config/config.c:841 Setting global/locking_dir to /var/lock/lvm
#activate/activate.c:358 Getting target version for linear
#ioctl/libdm-iface.c:1569 dm version OF [16384]
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#activate/activate.c:358 Getting target version for striped
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#config/config.c:864 Setting activation/mirror_region_size to 512
...

You can display help for any of the LVM CLI commands with the --help argument of the command.

commandname --help

To display the man page for a command, execute the man command:

man commandname

The man lvm command provides general online information about LVM.

All LVM objects are referenced internally by a UUID, which is assigned when you create the object.
This can be useful in a situation where you remove a physical volume called /dev/sdf which is
part of a volume group and, when you plug it back in, you find that it is now /dev/sdk. LVM will still
find the physical volume because it identifies the physical volume by its UUID and not its device
name. For information on specifying the UUID of a physical volume when creating a physical volume,
see Section 6.4, “Recovering Physical Volume Metadata” .

4.2. Physical Volume Administ rat ion

This section describes the commands that perform the various aspects of physical volume
administration.

4 .2.1. Creat ing Physical Volumes

The following subsections describe the commands used for creating physical volumes.

4.2 .1 .1 . Set t ing t he Part it io n T ype

If you are using a whole disk device for your physical volume, the disk must have no partition table.

Logical Volume Manager Administ rat ion

24

For DOS disk partitions, the partition id should be set to 0x8e using the fdisk or cfdisk command
or an equivalent. For whole disk devices only the partition table must be erased, which will effectively
destroy all data on that disk. You can remove an existing partition table by zeroing the first sector
with the following command:

dd if=/dev/zero of=PhysicalVolume bs=512 count=1

4.2 .1 .2 . Init ializing Physical Vo lumes

Use the pvcreate command to initialize a block device to be used as a physical volume.
Initialization is analogous to formatting a file system.

The following command initializes /dev/sdd , /dev/sde, and /dev/sdf as LVM physical volumes
for later use as part of LVM logical volumes.

pvcreate /dev/sdd /dev/sde /dev/sdf

To initialize partitions rather than whole disks: run the pvcreate command on the partition. The
following example initializes the partition /dev/hdb1 as an LVM physical volume for later use as
part of an LVM logical volume.

pvcreate /dev/hdb1

4.2 .1 .3. Scanning fo r Blo ck Devices

You can scan for block devices that may be used as physical volumes with the lvmdiskscan
command, as shown in the following example.

lvmdiskscan
 /dev/ram0 [16.00 MB]
 /dev/sda [17.15 GB]
 /dev/root [13.69 GB]
 /dev/ram [16.00 MB]
 /dev/sda1 [17.14 GB] LVM physical volume
 /dev/VolGroup00/LogVol01 [512.00 MB]
 /dev/ram2 [16.00 MB]
 /dev/new_vg/lvol0 [52.00 MB]
 /dev/ram3 [16.00 MB]
 /dev/pkl_new_vg/sparkie_lv [7.14 GB]
 /dev/ram4 [16.00 MB]
 /dev/ram5 [16.00 MB]
 /dev/ram6 [16.00 MB]
 /dev/ram7 [16.00 MB]
 /dev/ram8 [16.00 MB]
 /dev/ram9 [16.00 MB]
 /dev/ram10 [16.00 MB]
 /dev/ram11 [16.00 MB]
 /dev/ram12 [16.00 MB]
 /dev/ram13 [16.00 MB]
 /dev/ram14 [16.00 MB]
 /dev/ram15 [16.00 MB]
 /dev/sdb [17.15 GB]
 /dev/sdb1 [17.14 GB] LVM physical volume
 /dev/sdc [17.15 GB]

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

25

 /dev/sdc1 [17.14 GB] LVM physical volume
 /dev/sdd [17.15 GB]
 /dev/sdd1 [17.14 GB] LVM physical volume
 7 disks
 17 partitions
 0 LVM physical volume whole disks
 4 LVM physical volumes

4 .2.2. Displaying Physical Volumes

There are three commands you can use to display properties of LVM physical volumes: pvs,
pvdisplay, and pvscan.

The pvs command provides physical volume information in a configurable form, displaying one line
per physical volume. The pvs command provides a great deal of format control, and is useful for
scripting. For information on using the pvs command to customize your output, see Section 4.8,
“Customized Reporting for LVM” .

The pvdisplay command provides a verbose multi-line output for each physical volume. It displays
physical properties (size, extents, volume group, and so on) in a fixed format.

The following example shows the output of the pvdisplay command for a single physical volume.

pvdisplay
 --- Physical volume ---
 PV Name /dev/sdc1
 VG Name new_vg
 PV Size 17.14 GB / not usable 3.40 MB
 Allocatable yes
 PE Size (KByte) 4096
 Total PE 4388
 Free PE 4375
 Allocated PE 13
 PV UUID Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe

The pvscan command scans all supported LVM block devices in the system for physical volumes.

The following command shows all physical devices found:

pvscan
 PV /dev/sdb2 VG vg0 lvm2 [964.00 MB / 0 free]
 PV /dev/sdc1 VG vg0 lvm2 [964.00 MB / 428.00 MB free]
 PV /dev/sdc2 lvm2 [964.84 MB]
 Total: 3 [2.83 GB] / in use: 2 [1.88 GB] / in no VG: 1 [964.84 MB]

You can define a filter in the lvm.conf file so that this command will avoid scanning specific
physical volumes. For information on using filters to control which devices are scanned, refer to
Section 4.5, “Controlling LVM Device Scans with Filters” .

4 .2.3. Prevent ing Allocat ion on a Physical Volume

You can prevent allocation of physical extents on the free space of one or more physical volumes
with the pvchange command. This may be necessary if there are disk errors, or if you will be
removing the physical volume.

Logical Volume Manager Administ rat ion

26

The following command disallows the allocation of physical extents on /dev/sdk1.

pvchange -x n /dev/sdk1

You can also use the -xy arguments of the pvchange command to allow allocation where it had
previously been disallowed.

4 .2.4 . Resiz ing a Physical Volume

If you need to change the size of an underlying block device for any reason, use the pvresize
command to update LVM with the new size. You can execute this command while LVM is using the
physical volume.

4 .2.5. Removing Physical Volumes

If a device is no longer required for use by LVM, you can remove the LVM label with the pvremove
command. Executing the pvremove command zeroes the LVM metadata on an empty physical
volume.

If the physical volume you want to remove is currently part of a volume group, you must remove it
from the volume group with the vgreduce command, as described in Section 4.3.7, “Removing
Physical Volumes from a Volume Group” .

pvremove /dev/ram15
 Labels on physical volume "/dev/ram15" successfully wiped

4.3. Volume Group Administ rat ion

This section describes the commands that perform the various aspects of volume group
administration.

4 .3.1. Creat ing Volume Groups

To create a volume group from one or more physical volumes, use the vgcreate command. The
vgcreate command creates a new volume group by name and adds at least one physical volume to
it.

The following command creates a volume group named vg1 that contains physical volumes
/dev/sdd1 and /dev/sde1.

vgcreate vg1 /dev/sdd1 /dev/sde1

When physical volumes are used to create a volume group, its disk space is divided into 4MB
extents, by default. This extent is the minimum amount by which the logical volume may be increased
or decreased in size. Large numbers of extents will have no impact on I/O performance of the logical
volume.

You can specify the extent size with the -s option to the vgcreate command if the default extent size
is not suitable. You can put limits on the number of physical or logical volumes the volume group
can have by using the -p and -l arguments of the vgcreate command.

By default, a volume group allocates physical extents according to common-sense rules such as not
placing parallel stripes on the same physical volume. This is the normal allocation policy. You can

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

27

use the --alloc argument of the vgcreate command to specify an allocation policy of
contiguous, anywhere, or cling . In general, allocation policies other than normal are required
only in special cases where you need to specify unusual or nonstandard extent allocation. For
further information on how LVM allocates physical extents, refer to Section 4.3.2, “LVM Allocation” .

LVM volume groups and underlying logical volumes are included in the device special file directory
tree in the /dev directory with the following layout:

/dev/vg/lv/

For example, if you create two volume groups myvg1 and myvg2, each with three logical volumes
named lv01, lv02, and lv03, this creates six device special files:

/dev/myvg1/lv01
/dev/myvg1/lv02
/dev/myvg1/lv03
/dev/myvg2/lv01
/dev/myvg2/lv02
/dev/myvg2/lv03

The device special files are not present if the corresponding logical volume is not currently active.

The maximum device size with LVM is 8 Exabytes on 64-bit CPUs.

4 .3.2. LVM Allocat ion

When an LVM operation needs to allocate physical extents for one or more logical volumes, the
allocation proceeds as follows:

The complete set of unallocated physical extents in the volume group is generated for
consideration. If you supply any ranges of physical extents at the end of the command line, only
unallocated physical extents within those ranges on the specified physical volumes are
considered.

Each allocation policy is tried in turn, starting with the strictest policy (contiguous) and ending
with the allocation policy specified using the --alloc option or set as the default for the
particular logical volume or volume group. For each policy, working from the lowest-numbered
logical extent of the empty logical volume space that needs to be filled, as much space as
possible is allocated, according to the restrictions imposed by the allocation policy. If more space
is needed, LVM moves on to the next policy.

The allocation policy restrictions are as follows:

An allocation policy of contiguous requires that the physical location of any logical extent that
is not the first logical extent of a logical volume is adjacent to the physical location of the logical
extent immediately preceding it.

When a logical volume is striped or mirrored, the contiguous allocation restriction is applied
independently to each stripe or mirror image (leg) that needs space.

An allocation policy of cling requires that the physical volume used for any logical extent be
added to an existing logical volume that is already in use by at least one logical extent earlier in
that logical volume. If the configuration parameter allocation/cling_tag_list is defined,
then two physical volumes are considered to match if any of the listed tags is present on both
physical volumes. This allows groups of physical volumes with similar properties (such as their

Logical Volume Manager Administ rat ion

28

physical location) to be tagged and treated as equivalent for allocation purposes. For more
information on using the cling policy in conjunction with LVM tags to specify which additional
physical volumes to use when extending an LVM volume, see Section 4.4.16.3, “Extending a
Logical Volume with the cling Allocation Policy” .

When a Logical Volume is striped or mirrored, the cling allocation restriction is applied
independently to each stripe or mirror image (leg) that needs space.

An allocation policy of normal will not choose a physical extent that shares the same physical
volume as a logical extent already allocated to a parallel logical volume (that is, a different stripe
or mirror image/leg) at the same offset within that parallel logical volume.

When allocating a mirror log at the same time as logical volumes to hold the mirror data, an
allocation policy of normal will first try to select different physical volumes for the log and the
data. If that is not possible and the allocation/mirror_logs_require_separate_pvs
configuration parameter is set to 0, it will then allow the log to share physical volume(s) with part
of the data.

Similarly, when allocating thin pool metadata, an allocation policy of normal will follow the same
considerations as for allocation of a mirror log, based on the value of the
allocation/thin_pool_metadata_require_separate_pvs configuration parameter.

If there are sufficient free extents to satisfy an allocation request but a normal allocation policy
would not use them, the anywhere allocation policy will, even if that reduces performance by
placing two stripes on the same physical volume.

The allocation policies can be changed using the vgchange command.

Note

If you rely upon any layout behavior beyond that documented in this section according to the
defined allocation policies, you should note that this might change in future versions of the
code. For example, if you supply on the command line two empty physical volumes that have
an identical number of free physical extents available for allocation, LVM currently considers
using each of them in the order they are listed; there is no guarantee that future releases will
maintain that property. If it is important to obtain a specific layout for a particular Logical
Volume, then you should build it up through a sequence of lvcreate and lvconvert steps
such that the allocation policies applied to each step leave LVM no discretion over the layout.

To view the way the allocation process currently works in any specific case, you can read the debug
logging output, for example by adding the -vvvv option to a command.

4 .3.3. Creat ing Volume Groups in a Cluster

You create volume groups in a cluster environment with the vgcreate command, just as you create
them on a single node.

By default, volume groups created with CLVM on shared storage are visible to all computers that
have access to the shared storage. It is possible, however, to create volume groups that are local,
visible only to one node in the cluster, by using the -c n option of the vgcreate command.

The following command, when executed in a cluster environment, creates a volume group that is
local to the node from which the command was executed. The command creates a local volume
named vg1 that contains physical volumes /dev/sdd1 and /dev/sde1.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

29

vgcreate -c n vg1 /dev/sdd1 /dev/sde1

You can change whether an existing volume group is local or clustered with the -c option of the
vgchange command, which is described in Section 4.3.9, “Changing the Parameters of a Volume
Group” .

You can check whether an existing volume group is a clustered volume group with the vgs
command, which displays the c attribute if the volume is clustered. The following command displays
the attributes of the volume groups VolGroup00 and testvg1. In this example, VolGroup00 is
not clustered, while testvg1 is clustered, as indicated by the c attribute under the Attr heading.

vgs
 VG #PV #LV #SN Attr VSize VFree
 VolGroup00 1 2 0 wz--n- 19.88G 0
 testvg1 1 1 0 wz--nc 46.00G 8.00M

For more information on the vgs command, see Section 4.3.5, “Displaying Volume
Groups”Section 4.8, “Customized Reporting for LVM” , and the vgs man page.

4 .3.4 . Adding Physical Volumes to a Volume Group

To add additional physical volumes to an existing volume group, use the vgextend command. The
vgextend command increases a volume group's capacity by adding one or more free physical
volumes.

The following command adds the physical volume /dev/sdf1 to the volume group vg1.

vgextend vg1 /dev/sdf1

4 .3.5. Displaying Volume Groups

There are two commands you can use to display properties of LVM volume groups: vgs and
vgdisplay.

The vgscan command, which scans all the disks for volume groups and rebuilds the LVM cache file,
also displays the volume groups. For information on the vgscan command, see Section 4.3.6,
“Scanning Disks for Volume Groups to Build the Cache File” .

The vgs command provides volume group information in a configurable form, displaying one line
per volume group. The vgs command provides a great deal of format control, and is useful for
scripting. For information on using the vgs command to customize your output, see Section 4.8,
“Customized Reporting for LVM” .

The vgdisplay command displays volume group properties (such as size, extents, number of
physical volumes, and so on) in a fixed form. The following example shows the output of the
vgdisplay command for the volume group new_vg . If you do not specify a volume group, all
existing volume groups are displayed.

vgdisplay new_vg
 --- Volume group ---
 VG Name new_vg
 System ID
 Format lvm2
 Metadata Areas 3
 Metadata Sequence No 11

Logical Volume Manager Administ rat ion

30

 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 1
 Open LV 0
 Max PV 0
 Cur PV 3
 Act PV 3
 VG Size 51.42 GB
 PE Size 4.00 MB
 Total PE 13164
 Alloc PE / Size 13 / 52.00 MB
 Free PE / Size 13151 / 51.37 GB
 VG UUID jxQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

4 .3.6. Scanning Disks for Volume Groups to Build the Cache File

The vgscan command scans all supported disk devices in the system looking for LVM physical
volumes and volume groups. This builds the LVM cache file in the /etc/lvm/cache/.cache file,
which maintains a listing of current LVM devices.

LVM runs the vgscan command automatically at system startup and at other times during LVM
operation, such as when you execute the vgcreate command or when LVM detects an
inconsistency.

Note

You may need to run the vgscan command manually when you change your hardware
configuration and add or delete a device from a node, causing new devices to be visible to the
system that were not present at system bootup. This may be necessary, for example, when you
add new disks to the system on a SAN or hotplug a new disk that has been labeled as a
physical volume.

You can define a filter in the /etc/lvm/lvm.conf file to restrict the scan to avoid specific devices.
For information on using filters to control which devices are scanned, see Section 4.5, “Controlling
LVM Device Scans with Filters” .

The following example shows the output of the vgscan command.

vgscan
 Reading all physical volumes. This may take a while...
 Found volume group "new_vg" using metadata type lvm2
 Found volume group "officevg" using metadata type lvm2

4 .3.7. Removing Physical Volumes from a Volume Group

To remove unused physical volumes from a volume group, use the vgreduce command. The
vgreduce command shrinks a volume group's capacity by removing one or more empty physical
volumes. This frees those physical volumes to be used in different volume groups or to be removed
from the system.

Before removing a physical volume from a volume group, you can make sure that the physical
volume is not used by any logical volumes by using the pvdisplay command.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

31

pvdisplay /dev/hda1

-- Physical volume ---
PV Name /dev/hda1
VG Name myvg
PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1
PV Status available
Allocatable yes (but full)
Cur LV 1
PE Size (KByte) 4096
Total PE 499
Free PE 0
Allocated PE 499
PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-OVSen7

If the physical volume is still being used you will have to migrate the data to another physical volume
using the pvmove command. Then use the vgreduce command to remove the physical volume.

The following command removes the physical volume /dev/hda1 from the volume group
my_volume_group.

vgreduce my_volume_group /dev/hda1

If a logical volume contains a physical volume that fails, you cannot use that logical volume. To
remove missing physical volumes from a volume group, you can use the --removemissing
parameter of the vgreduce command, if there are no logical volumes that are allocated on the
missing physical volumes.

If the physical volume that fails contains a mirror image of a logical volume of a mirror segment
type, you can remove that image from the mirror with the vgreduce --removemissing --
mirrorsonly --force command. This removes only the logical volumes that are mirror images
from the physical volume.

For information on recovering from LVM mirror failure, see Section 6.3, “Recovering from LVM Mirror
Failure” . For information on removing lost physical volumes from a volume group, see Section 6.6,
“Removing Lost Physical Volumes from a Volume Group”

4 .3.8. Act ivat ing and Deact ivat ing Volume Groups

When you create a volume group it is, by default, activated. This means that the logical volumes in
that group are accessible and subject to change.

There are various circumstances for which you need to make a volume group inactive and thus
unknown to the kernel. To deactivate or activate a volume group, use the -a (--available)
argument of the vgchange command.

The following example deactivates the volume group my_volume_group.

vgchange -a n my_volume_group

If clustered locking is enabled, add ’e’ to activate or deactivate a volume group exclusively on one
node or ’l’ to activate or/deactivate a volume group only on the local node. Logical volumes with
single-host snapshots are always activated exclusively because they can only be used on one node
at once.

Logical Volume Manager Administ rat ion

32

You can deactivate individual logical volumes with the lvchange command, as described in
Section 4.4.12, “Changing the Parameters of a Logical Volume Group” , For information on activating
logical volumes on individual nodes in a cluster, see Section 4.7, “Activating Logical Volumes on
Individual Nodes in a Cluster” .

4 .3.9. Changing the Parameters of a Volume Group

The vgchange command is used to deactivate and activate volume groups, as described in
Section 4.3.8, “Activating and Deactivating Volume Groups” . You can also use this command to
change several volume group parameters for an existing volume group.

The following command changes the maximum number of logical volumes of volume group vg00 to
128.

vgchange -l 128 /dev/vg00

For a description of the volume group parameters you can change with the vgchange command,
see the vgchange(8) man page.

4 .3.10. Removing Volume Groups

To remove a volume group that contains no logical volumes, use the vgremove command.

vgremove officevg
 Volume group "officevg" successfully removed

4 .3.11. Split t ing a Volume Group

To split the physical volumes of a volume group and create a new volume group, use the vgsplit
command.

Logical volumes cannot be split between volume groups. Each existing logical volume must be
entirely on the physical volumes forming either the old or the new volume group. If necessary,
however, you can use the pvmove command to force the split.

The following example splits the new volume group smallvg from the original volume group
bigvg .

vgsplit bigvg smallvg /dev/ram15
 Volume group "smallvg" successfully split from "bigvg"

4 .3.12. Combining Volume Groups

To combine two volume groups into a single volume group, use the vgmerge command. You can
merge an inactive "source" volume with an active or an inactive "destination" volume if the physical
extent sizes of the volume are equal and the physical and logical volume summaries of both volume
groups fit into the destination volume groups limits.

The following command merges the inactive volume group my_vg into the active or inactive volume
group databases giving verbose runtime information.

vgmerge -v databases my_vg

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

33

4 .3.13. Backing Up Volume Group Metadata

Metadata backups and archives are automatically created on every configuration change to a
volume group or logical volume unless disabled in the lvm.conf file. By default, the metadata
backup is stored in the /etc/lvm/backup file and the metadata archives are stored in the
/etc/lvm/archives file. You can manually back up the metadata to the /etc/lvm/backup file
with the vgcfgbackup command.

The vgcfgrestore command restores the metadata of a volume group from the archive to all the
physical volumes in the volume groups.

For an example of using the vgcfgrestore command to recover physical volume metadata, see
Section 6.4, “Recovering Physical Volume Metadata” .

4 .3.14 . Renaming a Volume Group

Use the vgrename command to rename an existing volume group.

Either of the following commands renames the existing volume group vg02 to my_volume_group

vgrename /dev/vg02 /dev/my_volume_group

vgrename vg02 my_volume_group

4 .3.15. Moving a Volume Group to Another System

You can move an entire LVM volume group to another system. It is recommended that you use the
vgexport and vgimport commands when you do this.

Note

You can use the --force argument of the vgimport command. This allows you to import
volume groups that are missing physical volumes and subsequently run the vgreduce --
removemissing command.

The vgexport command makes an inactive volume group inaccessible to the system, which allows
you to detach its physical volumes. The vgimport command makes a volume group accessible to a
machine again after the vgexport command has made it inactive.

To move a volume group from one system to another, perform the following steps:

1. Make sure that no users are accessing files on the active volumes in the volume group, then
unmount the logical volumes.

2. Use the -a n argument of the vgchange command to mark the volume group as inactive,
which prevents any further activity on the volume group.

3. Use the vgexport command to export the volume group. This prevents it from being
accessed by the system from which you are removing it.

After you export the volume group, the physical volume will show up as being in an exported
volume group when you execute the pvscan command, as in the following example.

Logical Volume Manager Administ rat ion

34

pvscan
 PV /dev/sda1 is in exported VG myvg [17.15 GB / 7.15 GB free]
 PV /dev/sdc1 is in exported VG myvg [17.15 GB / 15.15 GB free]
 PV /dev/sdd1 is in exported VG myvg [17.15 GB / 15.15 GB free]
 ...

When the system is next shut down, you can unplug the disks that constitute the volume
group and connect them to the new system.

4. When the disks are plugged into the new system, use the vgimport command to import the
volume group, making it accessible to the new system.

5. Activate the volume group with the -a y argument of the vgchange command.

6. Mount the file system to make it available for use.

4 .3.16. Recreat ing a Volume Group Directory

To recreate a volume group directory and logical volume special files, use the vgmknodes
command. This command checks the LVM2 special files in the /dev directory that are needed for
active logical volumes. It creates any special files that are missing and removes unused ones.

You can incorporate the vgmknodes command into the vgscan command by specifying the
mknodes argument to the vgscan command.

4.4 . Logical Volume Administ rat ion

This section describes the commands that perform the various aspects of logical volume
administration.

4 .4 .1. Creat ing Linear Logical Volumes

To create a logical volume, use the lvcreate command. If you do not specify a name for the logical
volume, the default name lvol# is used where # is the internal number of the logical volume.

When you create a logical volume, the logical volume is carved from a volume group using the free
extents on the physical volumes that make up the volume group. Normally logical volumes use up
any space available on the underlying physical volumes on a next-free basis. Modifying the logical
volume frees and reallocates space in the physical volumes.

The following command creates a logical volume 10 gigabytes in size in the volume group vg1.

lvcreate -L 10G vg1

The default unit for logical volume size is megabytes. The following command creates a 1500
megabyte linear logical volume named testlv in the volume group testvg , creating the block
device /dev/testvg/testlv.

lvcreate -L 1500 -n testlv testvg

The following command creates a 50 gigabyte logical volume named gfslv from the free extents in
volume group vg0 .

lvcreate -L 50G -n gfslv vg0

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

35

You can use the -l argument of the lvcreate command to specify the size of the logical volume in
extents. You can also use this argument to specify the percentage of of the size of a related volume
group, logical volume, or set of physical volumes. The suffix %VG denotes the total size of the
volume group, the suffix %FREE the remaining free space in the volume group, and the suffix %PVS
the free space in the specified physical volumes. For a snapshot, the size can be expressed as a
percentage of the total size of the origin logical volume with the suffix %ORIGIN (100%ORIGIN
provides space for the whole origin). When expressed as a percentage, the size defines an upper
limit for the number of logical extents in the new logical volume. The precise number of logical extents
in the new LV is not determined until the command has completed.

The following command creates a logical volume called mylv that uses 60% of the total space in
volume group testvg .

lvcreate -l 60%VG -n mylv testvg

The following command creates a logical volume called yourlv that uses all of the unallocated
space in the volume group testvg .

lvcreate -l 100%FREE -n yourlv testvg

You can use -l argument of the lvcreate command to create a logical volume that uses the entire
volume group. Another way to create a logical volume that uses the entire volume group is to use the
vgdisplay command to find the "Total PE" size and to use those results as input to the lvcreate
command.

The following commands create a logical volume called mylv that fills the volume group named
testvg .

vgdisplay testvg | grep "Total PE"
Total PE 10230
lvcreate -l 10230 -n mylv testvg

The underlying physical volumes used to create a logical volume can be important if the physical
volume needs to be removed, so you may need to consider this possibility when you create the
logical volume. For information on removing a physical volume from a volume group, see
Section 4.3.7, “Removing Physical Volumes from a Volume Group” .

To create a logical volume to be allocated from a specific physical volume in the volume group,
specify the physical volume or volumes at the end at the lvcreate command line. The following
command creates a logical volume named testlv in volume group testvg allocated from the
physical volume /dev/sdg1,

lvcreate -L 1500 -n testlv testvg /dev/sdg1

You can specify which extents of a physical volume are to be used for a logical volume. The
following example creates a linear logical volume out of extents 0 through 24 of physical volume
/dev/sda1 and extents 50 through 124 of physical volume /dev/sdb1 in volume group testvg .

lvcreate -l 100 -n testlv testvg /dev/sda1:0-24 /dev/sdb1:50-124

The following example creates a linear logical volume out of extents 0 through 25 of physical volume
/dev/sda1 and then continues laying out the logical volume at extent 100.

lvcreate -l 100 -n testlv testvg /dev/sda1:0-25:100-

Logical Volume Manager Administ rat ion

36

The default policy for how the extents of a logical volume are allocated is inherit, which applies
the same policy as for the volume group. These policies can be changed using the lvchange
command. For information on allocation policies, see Section 4.3.1, “Creating Volume Groups” .

4 .4 .2. Creat ing St riped Volumes

For large sequential reads and writes, creating a striped logical volume can improve the efficiency of
the data I/O. For general information about striped volumes, see Section 2.3.2, “Striped Logical
Volumes” .

When you create a striped logical volume, you specify the number of stripes with the -i argument of
the lvcreate command. This determines over how many physical volumes the logical volume will be
striped. The number of stripes cannot be greater than the number of physical volumes in the volume
group (unless the --alloc anywhere argument is used).

If the underlying physical devices that make up a striped logical volume are different sizes, the
maximum size of the striped volume is determined by the smallest underlying device. For example, in
a two-legged stripe, the maximum size is twice the size of the smaller device. In a three-legged stripe,
the maximum size is three times the size of the smallest device.

The following command creates a striped logical volume across 2 physical volumes with a stripe of
64 kilobytes. The logical volume is 50 gigabytes in size, is named gfslv, and is carved out of
volume group vg0 .

lvcreate -L 50G -i 2 -I 64 -n gfslv vg0

As with linear volumes, you can specify the extents of the physical volume that you are using for the
stripe. The following command creates a striped volume 100 extents in size that stripes across two
physical volumes, is named stripelv and is in volume group testvg . The stripe will use sectors 0-
49 of /dev/sda1 and sectors 50-99 of /dev/sdb1.

lvcreate -l 100 -i 2 -n stripelv testvg /dev/sda1:0-49 /dev/sdb1:50-
99
 Using default stripesize 64.00 KB
 Logical volume "stripelv" created

4 .4 .3. RAID Logical Volumes

LVM supports RAID0/1/4/5/6/10.

Note

RAID logical volumes are not cluster-aware. While RAID logical volumes can be created and
activated exclusively on one machine, they cannot be activated simultaneously on more than
one machine. If you require non-exclusive mirrored volumes, you must create the volumes with
a mirror segment type, as described in Section 4.4.4, “Creating Mirrored Volumes” .

To create a RAID logical volume, you specify a raid type as the --type argument of the lvcreate
command. Table 4.1, “RAID Segment Types” describes the possible RAID segment types.

Table 4 .1. RAID Segment Types

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

37

Segment type Descript ion
raid1 RAID1 mirroring. This is the default value for the --type argument of

the lvcreate command when you specify the -m but you do not
specify striping.

raid4 RAID4 dedicated parity disk
raid5 Same as raid5_ls
raid5_la RAID5 left asymmetric.

Rotating parity 0 with data continuation

raid5_ra RAID5 right asymmetric.

Rotating parity N with data continuation

raid5_ls RAID5 left symmetric.

Rotating parity 0 with data restart

raid5_rs RAID5 right symmetric.

Rotating parity N with data restart

raid6 Same as raid6_zr
raid6_zr RAID6 zero restart

Rotating parity zero (left-to-right) with data restart

raid6_nr RAID6 N restart

Rotating parity N (left-to-right) with data restart

raid6_nc RAID6 N continue

Rotating parity N (left-to-right) with data continuation

raid10 Striped mirrors. This is the default value for the --type argument of the
lvcreate command if you specify the -m and you specify a number of
stripes that is greater than 1.

Striping of mirror sets

raid0/raid0_meta
(Red Hat Enterprise
Linux 7.3 and later)

Striping. RAID0 spreads logical volume data across multiple data
subvolumes in units of stripe size. This is used to increase
performance. Logical volume data will be lost if any of the data
subvolumes fail. For information on creating RAID0 volumes, see
Section 4.4.3.1, “Creating RAID0 Volumes (Red Hat Enterprise Linux 7.3
and Later)” .

For most users, specifying one of the five available primary types (raid1, raid4 , raid5, raid6 ,
raid10) should be sufficient. For more information on the different algorithms used by RAID 5/6,
refer to chapter four of the Common RAID Disk Data Format Specification at
http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf.

When you create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size
for every data or parity subvolume in the array. For example, creating a 2-way RAID1 array results in
two metadata subvolumes (lv_rmeta_0 and lv_rmeta_1) and two data subvolumes
(lv_rimage_0 and lv_rimage_1). Similarly, creating a 3-way stripe (plus 1 implicit parity device)

Logical Volume Manager Administ rat ion

38

http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf

RAID4 results in 4 metadata subvolumes (lv_rmeta_0 , lv_rmeta_1, lv_rmeta_2, and
lv_rmeta_3) and 4 data subvolumes (lv_rimage_0 , lv_rimage_1, lv_rimage_2, and
lv_rimage_3).

The following command creates a 2-way RAID1 array named my_lv in the volume group my_vg that
is one gigabyte in size.

lvcreate --type raid1 -m 1 -L 1G -n my_lv my_vg

You can create RAID1 arrays with different numbers of copies according to the value you specify for
the -m argument. Similarly, you specify the number of stripes for a RAID 4/5/6 logical volume with the
-i argument. You can also specify the stripe size with the -I argument.

The following command creates a RAID5 array (3 stripes + 1 implicit parity drive) named my_lv in
the volume group my_vg that is one gigabyte in size. Note that you specify the number of stripes just
as you do for an LVM striped volume; the correct number of parity drives is added automatically.

lvcreate --type raid5 -i 3 -L 1G -n my_lv my_vg

The following command creates a RAID6 array (3 stripes + 2 implicit parity drives) named my_lv in
the volume group my_vg that is one gigabyte in size.

lvcreate --type raid6 -i 3 -L 1G -n my_lv my_vg

After you have created a RAID logical volume with LVM, you can activate, change, remove, display,
and use the volume just as you would any other LVM logical volume.

When you create RAID10 logical volumes, the background I/O required to initialize the logical
volumes with a sync operation can crowd out other I/O operations to LVM devices, such as updates
to volume group metadata, particularly when you are creating many RAID logical volumes. This can
cause the other LVM operations to slow down.

You can control the rate at which a RAID logical volume is initialized by implementing recovery
throttling. You control the rate at which sync operations are performed by setting the minimum and
maximum I/O rate for those operations with the --minrecoveryrate and --maxrecoveryrate
options of the lvcreate command. You specify these options as follows.

--maxrecoveryrate Rate[bBsSkKmMgG]

Sets the maximum recovery rate for a RAID logical volume so that it will not crowd out nominal I/O
operations. The Rate is specified as an amount per second for each device in the array. If no
suffix is given, then kiB/sec/device is assumed. Setting the recovery rate to 0 means it will be
unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations
achieves a minimum throughput, even when heavy nominal I/O is present. The Rate is specified as
an amount per second for each device in the array. If no suffix is given, then kiB/sec/device is
assumed.

The following command creates a 2-way RAID10 array with 3 stripes that is 10 gigabytes in size with
a maximum recovery rate of 128 kiB/sec/device. The array is named my_lv and is in the volume
group my_vg .

lvcreate --type raid10 -i 2 -m 1 -L 10G --maxrecoveryrate 128 -n my_lv
my_vg

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

39

You can also specify minimum and maximum recovery rates for a RAID scrubbing operation. For
information on RAID scrubbing, see Section 4.4.3.11, “Scrubbing a RAID Logical Volume” .

Note

You can generate commands to create logical volumes on RAID storage with the LVM RAID
Calculator application. This application uses the information you input about your current or
planned storage to generate these commands. The LVM RAID Calculator application can be
found at https://access.redhat.com/labs/lvmraidcalculator/.

The following sections describes the administrative tasks you can perform on LVM RAID devices:

Section 4.4.3.1, “Creating RAID0 Volumes (Red Hat Enterprise Linux 7.3 and Later)” .

Section 4.4.3.2, “Converting a Linear Device to a RAID Device”

Section 4.4.3.3, “Converting an LVM RAID1 Logical Volume to an LVM Linear Logical Volume”

Section 4.4.3.4, “Converting a Mirrored LVM Device to a RAID1 Device”

Section 4.4.3.5, “Resizing a RAID Logical Volume”

Section 4.4.3.6, “Changing the Number of Images in an Existing RAID1 Device”

Section 4.4.3.7, “Splitting off a RAID Image as a Separate Logical Volume”

Section 4.4.3.8, “Splitting and Merging a RAID Image”

Section 4.4.3.9, “Setting a RAID fault policy”

Section 4.4.3.10, “Replacing a RAID device”

Section 4.4.3.11, “Scrubbing a RAID Logical Volume”

Section 4.4.3.12, “RAID Takeover (Red Hat Enterprise Linux 7.4 and Later)”

Section 4.4.3.13, “Reshaping a RAID Logical Volume (Red Hat Enterprise Linux 7.4 and Later)”

Section 4.4.3.14, “Controlling I/O Operations on a RAID1 Logical Volume”

Section 4.4.3.15, “Changing the region size on a RAID Logical Volume (Red Hat Enterprise Linux
7.4 and later)”

4.4 .3.1 . Creat ing RAID0 Vo lumes (Red Hat Ent erprise Linux 7 .3 and Lat er)

The format for the command to create a RAID0 volume is as follows.

lvcreate --type raid0[_meta] --stripes Stripes --stripesize StripeSize
VolumeGroup [PhysicalVolumePath ...]

Table 4 .2. RAID0 Command Creat ion parameters

Parameter Descript ion

Logical Volume Manager Administ rat ion

4 0

https://access.redhat.com/labs/lvmraidcalculator/

--type raid0[_meta] Specifying raid0 creates a RAID0 volume without metadata volumes.
Specifying raid0_meta creates a RAID0 volume with metadata
volumes. Because RAID0 is non-resilient, it does not have to store any
mirrored data blocks as RAID1/10 or calculate and store any parity
blocks as RAID4/5/6 do. Hence, it does not need metadata volumes to
keep state about resynchronization progress of mirrored or parity
blocks. Metadata volumes become mandatory on a conversion from
RAID0 to RAID4/5/6/10, however, and specifying raid0_meta
preallocates those metadata volumes to prevent a respective allocation
failure.

--stripes Stripes Specifies the number of devices to spread the logical volume across.
--stripesize
StripeSize

Specifies the size of each stripe in kilobytes. This is the amount of data
that is written to one device before moving to the next device.

VolumeGroup Specifies the volume group to use.
PhysicalVolumePath
...

Specifies the devices to use. If this is not specified, LVM will choose the
number of devices specified by the Stripes option, one for each stripe.

Parameter Descript ion

4.4 .3.2 . Co nvert ing a Linear Device t o a RAID Device

You can convert an existing linear logical volume to a RAID device by using the --type argument of
the lvconvert command.

The following command converts the linear logical volume my_lv in volume group my_vg to a 2-way
RAID1 array.

lvconvert --type raid1 -m 1 my_vg/my_lv

Since RAID logical volumes are composed of metadata and data subvolume pairs, when you convert
a linear device to a RAID1 array, a new metadata subvolume is created and associated with the
original logical volume on (one of) the same physical volumes that the linear volume is on. The
additional images are added in metadata/data subvolume pairs. For example, if the original device is
as follows:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sde1(0)

After conversion to a 2-way RAID1 array the device contains the following data and metadata
subvolume pairs:

lvconvert --type raid1 -m 1 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)

If the metadata image that pairs with the original logical volume cannot be placed on the same
physical volume, the lvconvert will fail.

4.4 .3.3. Co nvert ing an LVM RAID1 Lo gical Vo lume t o an LVM Linear Lo gical Vo lume

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

4 1

4.4 .3.3. Co nvert ing an LVM RAID1 Lo gical Vo lume t o an LVM Linear Lo gical Vo lume

You can convert an existing RAID1 LVM logical volume to an LVM linear logical volume with the
lvconvert command by specifying the -m0 argument. This removes all the RAID data subvolumes
and all the RAID metadata subvolumes that make up the RAID array, leaving the top-level RAID1
image as the linear logical volume.

The following example displays an existing LVM RAID1 logical volume.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)

The following command converts the LVM RAID1 logical volume my_vg/my_lv to an LVM linear
device.

lvconvert -m0 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sde1(1)

When you convert an LVM RAID1 logical volume to an LVM linear volume, you can specify which
physical volumes to remove. The following example shows the layout of an LVM RAID1 logical
volume made up of two images: /dev/sda1 and /dev/sdb1. In this example, the lvconvert
command specifies that you want to remove /dev/sda1, leaving /dev/sdb1 as the physical
volume that makes up the linear device.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
lvconvert -m0 my_vg/my_lv /dev/sda1
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sdb1(1)

4.4 .3.4 . Co nvert ing a Mirro red LVM Device t o a RAID1 Device

You can convert an existing mirrored LVM device with a segment type of mirror to a RAID1 LVM
device with the lvconvert command by specifying the --type raid1 argument. This renames the
mirror subvolumes (*_mimage_*) to RAID subvolumes (*_rimage_*). In addition, the mirror log is
removed and metadata subvolumes (*_rmeta_*) are created for the data subvolumes on the same
physical volumes as the corresponding data subvolumes.

The following example shows the layout of a mirrored logical volume my_vg/my_lv.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 15.20 my_lv_mimage_0(0),my_lv_mimage_1(0)

Logical Volume Manager Administ rat ion

4 2

 [my_lv_mimage_0] /dev/sde1(0)
 [my_lv_mimage_1] /dev/sdf1(0)
 [my_lv_mlog] /dev/sdd1(0)

The following command converts the mirrored logical volume my_vg/my_lv to a RAID1 logical
volume.

lvconvert --type raid1 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(0)
 [my_lv_rmeta_0] /dev/sde1(125)
 [my_lv_rmeta_1] /dev/sdf1(125)

4.4 .3.5 . Resizing a RAID Lo gical Vo lume

You can resize a RAID logical volume in the following ways;

You can increase the size of a RAID logical volume of any type with the lvresize or lvextend
command. This does not change the number of RAID images. For striped RAID logical volumes
the same stripe rounding constraints apply as when you create a striped RAID logical volume. For
more information on extending a RAID volume, see Section 4.4.16.2, “Extending a RAID Volume” .

You can reduce the size of a RAID logical volume of any type with the lvresize or lvreduce
command. This does not change the number of RAID images. As with the lvextend command,
the same stripe rounding constraints apply as when you create a striped RAID logical volume. For
an example of a command to reduce the size of a logical volume, see Section 4.4.11, “Reducing
Logical Volumes” .

As of Red Hat Enterprise Linux 7.4, you can change the number of stripes on a striped RAID
logical volume (raid4/5/6/10) with the --stripes N parameter of the lvconvert command.
This increases or reduces the size of the RAID logical volume by the capacity of the stripes added
or removed. Note that raid10 volumes are capable only of adding stripes. This capability is part
of the RAID reshaping feature that allows you to change attributes of a RAID logical volume while
keeping the same RAID level. For information on RAID reshaping and examples of using the
lvconvert command to reshape a RAID logical volume, see the lvmraid (7) man page.

4.4 .3.6 . Changing t he Number o f Images in an Exist ing RAID1 Device

You can change the number of images in an existing RAID1 array just as you can change the
number of images in the earlier implementation of LVM mirroring. Use the lvconvert command to
specify the number of additional metadata/data subvolume pairs to add or remove. For information
on changing the volume configuration in the earlier implementation of LVM mirroring, refer to
Section 4.4.4.4, “Changing Mirrored Volume Configuration” .

When you add images to a RAID1 device with the lvconvert command, you can specify the total
number of images for the resulting device, or you can specify how many images to add to the device.
You can also optionally specify on which physical volumes the new metadata/data image pairs will
reside.

Metadata subvolumes (named *_rmeta_*) always exist on the same physical devices as their data
subvolume counterparts *_rimage_*). The metadata/data subvolume pairs will not be created on
the same physical volumes as those from another metadata/data subvolume pair in the RAID array
(unless you specify --alloc anywhere).

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

4 3

The format for the command to add images to a RAID1 volume is as follows:

lvconvert -m new_absolute_count vg/lv [removable_PVs]
lvconvert -m +num_additional_images vg/lv [removable_PVs]

For example, the following command displays the LVM device my_vg/my_lv, which is a 2-way
RAID1 array:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 6.25 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)

The following command converts the 2-way RAID1 device my_vg/my_lv to a 3-way RAID1 device:

lvconvert -m 2 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 6.25
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(0)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sde1(256)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)

When you add an image to a RAID1 array, you can specify which physical volumes to use for the
image. The following command converts the 2-way RAID1 device my_vg/my_lv to a 3-way RAID1
device, specifying that the physical volume /dev/sdd1 be used for the array:

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 56.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
lvconvert -m 2 my_vg/my_lv /dev/sdd1
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 28.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rimage_2] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)

To remove images from a RAID1 array, use the following command. When you remove images from a
RAID1 device with the lvconvert command, you can specify the total number of images for the

Logical Volume Manager Administ rat ion

4 4

resulting device, or you can specify how many images to remove from the device. You can also
optionally specify the physical volumes from which to remove the device.

lvconvert -m new_absolute_count vg/lv [removable_PVs]
lvconvert -m -num_fewer_images vg/lv [removable_PVs]

Additionally, when an image and its associated metadata subvolume volume are removed, any
higher-numbered images will be shifted down to fill the slot. If you remove lv_rimage_1 from a 3-
way RAID1 array that consists of lv_rimage_0 , lv_rimage_1, and lv_rimage_2, this results in
a RAID1 array that consists of lv_rimage_0 and lv_rimage_1. The subvolume lv_rimage_2
will be renamed and take over the empty slot, becoming lv_rimage_1.

The following example shows the layout of a 3-way RAID1 logical volume my_vg/my_lv.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)

The following command converts the 3-way RAID1 logical volume into a 2-way RAID1 logical volume.

lvconvert -m1 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)

The following command converts the 3-way RAID1 logical volume into a 2-way RAID1 logical volume,
specifying the physical volume that contains the image to remove as /dev/sde1.

lvconvert -m1 my_vg/my_lv /dev/sde1
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdf1(1)
 [my_lv_rimage_1] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sdf1(0)
 [my_lv_rmeta_1] /dev/sdg1(0)

4.4 .3.7 . Split t ing o ff a RAID Image as a Separat e Lo gical Vo lume

You can split off an image of a RAID logical volume to form a new logical volume. The procedure for
splitting off a RAID image is the same as the procedure for splitting off a redundant image of a
mirrored logical volume, as described in Section 4.4.4.2, “Splitting Off a Redundant Image of a
Mirrored Logical Volume” .

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

4 5

The format of the command to split off a RAID image is as follows:

lvconvert --splitmirrors count -n splitname vg/lv [removable_PVs]

Just as when you are removing a RAID image from an existing RAID1 logical volume (as described in
Section 4.4.3.6, “Changing the Number of Images in an Existing RAID1 Device”), when you remove a
RAID data subvolume (and its associated metadata subvolume) from the middle of the device any
higher numbered images will be shifted down to fill the slot. The index numbers on the logical
volumes that make up a RAID array will thus be an unbroken sequence of integers.

Note

You cannot split off a RAID image if the RAID1 array is not yet in sync.

The following example splits a 2-way RAID1 logical volume, my_lv, into two linear logical volumes,
my_lv and new.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 12.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
lvconvert --splitmirror 1 -n new my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sde1(1)
 new /dev/sdf1(1)

The following example splits a 3-way RAID1 logical volume, my_lv, into a 2-way RAID1 logical
volume, my_lv, and a linear logical volume, new

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)
lvconvert --splitmirror 1 -n new my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 new /dev/sdg1(1)

Logical Volume Manager Administ rat ion

4 6

4.4 .3.8 . Split t ing and Merging a RAID Image

You can temporarily split off an image of a RAID1 array for read-only use while keeping track of any
changes by using the --trackchanges argument in conjunction with the --splitmirrors
argument of the lvconvert command. This allows you to merge the image back into the array at a
later time while resyncing only those portions of the array that have changed since the image was
split.

The format for the lvconvert command to split off a RAID image is as follows.

lvconvert --splitmirrors count --trackchanges vg/lv [removable_PVs]

When you split off a RAID image with the --trackchanges argument, you can specify which image
to split but you cannot change the name of the volume being split. In addition, the resulting volumes
have the following constraints.

The new volume you create is read-only.

You cannot resize the new volume.

You cannot rename the remaining array.

You cannot resize the remaining array.

You can activate the new volume and the remaining array independently.

You can merge an image that was split off with the --trackchanges argument specified by
executing a subsequent lvconvert command with the --merge argument. When you merge the
image, only the portions of the array that have changed since the image was split are resynced.

The format for the lvconvert command to merge a RAID image is as follows.

lvconvert --merge raid_image

The following example creates a RAID1 logical volume and then splits off an image from that volume
while tracking changes to the remaining array.

lvcreate --type raid1 -m 2 -L 1G -n my_lv .vg
 Logical volume "my_lv" created
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdb1(1)
 [my_lv_rimage_1] /dev/sdc1(1)
 [my_lv_rimage_2] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdb1(0)
 [my_lv_rmeta_1] /dev/sdc1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)
lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 my_lv_rimage_2 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_2' to merge back into my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdb1(1)

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

4 7

 [my_lv_rimage_1] /dev/sdc1(1)
 my_lv_rimage_2 /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdb1(0)
 [my_lv_rmeta_1] /dev/sdc1(0)
 [my_lv_rmeta_2] /dev/sdd1(0)

The following example splits off an image from a RAID1 volume while tracking changes to the
remaining array, then merges the volume back into the array.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 lv_rimage_1 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdc1(1)
 my_lv_rimage_1 /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdc1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)
lvconvert --merge my_vg/my_lv_rimage_1
 my_vg/my_lv_rimage_1 successfully merged back into my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdc1(1)
 [my_lv_rimage_1] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdc1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)

Once you have split off an image from a RAID1 volume, you can make the split permanent by issuing
a second lvconvert --splitmirrors command, repeating the initial lvconvert command that
split the image without specifying the --trackchanges argument. This breaks the link that the --
trackchanges argument created.

After you have split an image with the --trackchanges argument, you cannot issue a subsequent
lvconvert --splitmirrors command on that array unless your intent is to permanently split the
image being tracked.

The following sequence of commands splits an image and tracks the image and then permanently
splits off the image being tracked.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 my_lv_rimage_1 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv
lvconvert --splitmirrors 1 -n new my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv /dev/sdc1(1)
 new /dev/sdd1(1)

Note, however, that the following sequence of commands will fail.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 my_lv_rimage_1 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv

Logical Volume Manager Administ rat ion

4 8

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 Cannot track more than one split image at a time

Similarly, the following sequence of commands will fail as well, since the split image is not the image
being tracked.

lvconvert --splitmirrors 1 --trackchanges my_vg/my_lv
 my_lv_rimage_1 split from my_lv for read-only purposes.
 Use 'lvconvert --merge my_vg/my_lv_rimage_1' to merge back into my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sdc1(1)
 my_lv_rimage_1 /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sdc1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)
lvconvert --splitmirrors 1 -n new my_vg/my_lv /dev/sdc1
 Unable to split additional image from my_lv while tracking changes for
my_lv_rimage_1

4.4 .3.9 . Set t ing a RAID fault po licy

LVM RAID handles device failures in an automatic fashion based on the preferences defined by the
raid_fault_policy field in the lvm.conf file.

If the raid_fault_policy field is set to allocate, the system will attempt to replace the failed
device with a spare device from the volume group. If there is no available spare device, this will be
reported to the system log.

If the raid_fault_policy field is set to warn, the system will produce a warning and the log
will indicate that a device has failed. This allows the user to determine the course of action to take.

As long as there are enough devices remaining to support usability, the RAID logical volume will
continue to operate.

4 .4 .3.9 .1. The allocate RAID Fault Policy

In the following example, the raid_fault_policy field has been set to allocate in the
lvm.conf file. The RAID logical volume is laid out as follows.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)

If the /dev/sde device fails, the system log will display error messages.

grep lvm /var/log/messages
Jan 17 15:57:18 bp-01 lvm[8599]: Device #0 of raid1 array, my_vg-my_lv,

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

4 9

has failed.
Jan 17 15:57:18 bp-01 lvm[8599]: /dev/sde1: read failed after 0 of 2048 at
250994294784: Input/output error
Jan 17 15:57:18 bp-01 lvm[8599]: /dev/sde1: read failed after 0 of 2048 at
250994376704: Input/output error
Jan 17 15:57:18 bp-01 lvm[8599]: /dev/sde1: read failed after 0 of 2048 at
0:
Input/output error
Jan 17 15:57:18 bp-01 lvm[8599]: /dev/sde1: read failed after 0 of 2048 at
4096: Input/output error
Jan 17 15:57:19 bp-01 lvm[8599]: Couldn't find device with uuid
3lugiV-3eSP-AFAR-sdrP-H20O-wM2M-qdMANy.
Jan 17 15:57:27 bp-01 lvm[8599]: raid1 array, my_vg-my_lv, is not in-sync.
Jan 17 15:57:36 bp-01 lvm[8599]: raid1 array, my_vg-my_lv, is now in-sync.

Since the raid_fault_policy field has been set to allocate, the failed device is replaced with a
new device from the volume group.

lvs -a -o name,copy_percent,devices vg
 Couldn't find device with uuid 3lugiV-3eSP-AFAR-sdrP-H20O-wM2M-qdMANy.
 LV Copy% Devices
 lv 100.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
 [lv_rimage_0] /dev/sdh1(1)
 [lv_rimage_1] /dev/sdf1(1)
 [lv_rimage_2] /dev/sdg1(1)
 [lv_rmeta_0] /dev/sdh1(0)
 [lv_rmeta_1] /dev/sdf1(0)
 [lv_rmeta_2] /dev/sdg1(0)

Note that even though the failed device has been replaced, the display still indicates that LVM could
not find the failed device. This is because, although the failed device has been removed from the
RAID logical volume, the failed device has not yet been removed from the volume group. To remove
the failed device from the volume group, you can execute vgreduce --removemissing VG.

If the raid_fault_policy has been set to allocate but there are no spare devices, the
allocation will fail, leaving the logical volume as it is. If the allocation fails, you have the option of
fixing the drive, then deactivating and activating the logical volume; this is described in
Section 4.4.3.9.2, “The warn RAID Fault Policy” . Alternately, you can replace the failed device, as
described in Section 4.4.3.10, “Replacing a RAID device” .

4 .4 .3.9 .2. The warn RAID Fault Policy

In the following example, the raid_fault_policy field has been set to warn in the lvm.conf file.
The RAID logical volume is laid out as follows.

lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdh1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sdh1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)

Logical Volume Manager Administ rat ion

50

If the /dev/sdh device fails, the system log will display error messages. In this case, however, LVM
will not automatically attempt to repair the RAID device by replacing one of the images. Instead, if the
device has failed you can replace the device with the --repair argument of the lvconvert
command, as shown below.

lvconvert --repair my_vg/my_lv
 /dev/sdh1: read failed after 0 of 2048 at 250994294784: Input/output
error
 /dev/sdh1: read failed after 0 of 2048 at 250994376704: Input/output
error
 /dev/sdh1: read failed after 0 of 2048 at 0: Input/output error
 /dev/sdh1: read failed after 0 of 2048 at 4096: Input/output error
 Couldn't find device with uuid fbI0YO-GX7x-firU-Vy5o-vzwx-vAKZ-feRxfF.
Attempt to replace failed RAID images (requires full device resync)?
[y/n]: y

lvs -a -o name,copy_percent,devices my_vg
 Couldn't find device with uuid fbI0YO-GX7x-firU-Vy5o-vzwx-vAKZ-feRxfF.
 LV Copy% Devices
 my_lv 64.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sde1(1)
 [my_lv_rimage_1] /dev/sdf1(1)
 [my_lv_rimage_2] /dev/sdg1(1)
 [my_lv_rmeta_0] /dev/sde1(0)
 [my_lv_rmeta_1] /dev/sdf1(0)
 [my_lv_rmeta_2] /dev/sdg1(0)

Note that even though the failed device has been replaced, the display still indicates that LVM could
not find the failed device. This is because, although the failed device has been removed from the
RAID logical volume, the failed device has not yet been removed from the volume group. To remove
the failed device from the volume group, you can execute vgreduce --removemissing VG.

If the device failure is a transient failure or you are able to repair the device that failed, you can
initiate recovery of the failed device with the --refresh option of the lvchange command.
Previously it was necessary to deactivate and then activate the logical volume.

The following command refreshes a logical volume.

lvchange --refresh my_vg/my_lv

4.4 .3.10. Replacing a RAID device

RAID is not like traditional LVM mirroring. LVM mirroring required failed devices to be removed or the
mirrored logical volume would hang. RAID arrays can keep on running with failed devices. In fact, for
RAID types other than RAID1, removing a device would mean converting to a lower level RAID (for
example, from RAID6 to RAID5, or from RAID4 or RAID5 to RAID0). Therefore, rather than removing a
failed device unconditionally and potentially allocating a replacement, LVM allows you to replace a
device in a RAID volume in a one-step solution by using the --replace argument of the lvconvert
command.

The format for the lvconvert --replace is as follows.

lvconvert --replace dev_to_remove vg/lv [possible_replacements]

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

51

The following example creates a RAID1 logical volume and then replaces a device in that volume.

lvcreate --type raid1 -m 2 -L 1G -n my_lv my_vg
 Logical volume "my_lv" created
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdb1(1)
 [my_lv_rimage_1] /dev/sdb2(1)
 [my_lv_rimage_2] /dev/sdc1(1)
 [my_lv_rmeta_0] /dev/sdb1(0)
 [my_lv_rmeta_1] /dev/sdb2(0)
 [my_lv_rmeta_2] /dev/sdc1(0)
lvconvert --replace /dev/sdb2 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 37.50
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sdb1(1)
 [my_lv_rimage_1] /dev/sdc2(1)
 [my_lv_rimage_2] /dev/sdc1(1)
 [my_lv_rmeta_0] /dev/sdb1(0)
 [my_lv_rmeta_1] /dev/sdc2(0)
 [my_lv_rmeta_2] /dev/sdc1(0)

The following example creates a RAID1 logical volume and then replaces a device in that volume,
specifying which physical volume to use for the replacement.

lvcreate --type raid1 -m 1 -L 100 -n my_lv my_vg
 Logical volume "my_lv" created
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda1 my_vg lvm2 a-- 1020.00m 916.00m
 /dev/sdb1 my_vg lvm2 a-- 1020.00m 916.00m
 /dev/sdc1 my_vg lvm2 a-- 1020.00m 1020.00m
 /dev/sdd1 my_vg lvm2 a-- 1020.00m 1020.00m
lvconvert --replace /dev/sdb1 my_vg/my_lv /dev/sdd1
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 28.00 my_lv_rimage_0(0),my_lv_rimage_1(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdd1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)

You can replace more than one RAID device at a time by specifying multiple replace arguments, as
in the following example.

Logical Volume Manager Administ rat ion

52

lvcreate --type raid1 -m 2 -L 100 -n my_lv my_vg
 Logical volume "my_lv" created
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 100.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdb1(1)
 [my_lv_rimage_2] /dev/sdc1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdb1(0)
 [my_lv_rmeta_2] /dev/sdc1(0)
lvconvert --replace /dev/sdb1 --replace /dev/sdc1 my_vg/my_lv
lvs -a -o name,copy_percent,devices my_vg
 LV Copy% Devices
 my_lv 60.00
my_lv_rimage_0(0),my_lv_rimage_1(0),my_lv_rimage_2(0)
 [my_lv_rimage_0] /dev/sda1(1)
 [my_lv_rimage_1] /dev/sdd1(1)
 [my_lv_rimage_2] /dev/sde1(1)
 [my_lv_rmeta_0] /dev/sda1(0)
 [my_lv_rmeta_1] /dev/sdd1(0)
 [my_lv_rmeta_2] /dev/sde1(0)

Note

When you specify a replacement drive using the lvconvert --replace command, the
replacement drives should never be allocated from extra space on drives already used in the
array. For example, lv_rimage_0 and lv_rimage_1 should not be located on the same
physical volume.

4.4 .3.11. Scrubbing a RAID Lo gical Vo lume

LVM provides scrubbing support for RAID logical volumes. RAID scrubbing is the process of reading
all the data and parity blocks in an array and checking to see whether they are coherent.

You initiate a RAID scrubbing operation with the --syncaction option of the lvchange command.
You specify either a check or repair operation. A check operation goes over the array and records
the number of discrepancies in the array but does not repair them. A repair operation corrects the
discrepancies as it finds them.

The format of the command to scrub a RAID logical volume is as follows:

lvchange --syncaction {check|repair} vg/raid_lv

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

53

Note

The lvchange --syncaction repair vg/raid_lv operation does not perform the same
function as the lvconvert --repair vg/raid_lv operation. The lvchange --
syncaction repair operation initiates a background synchronization operation on the
array, while the lvconvert --repair operation is designed to repair/replace failed devices
in a mirror or RAID logical volume.

In support of the new RAID scrubbing operation, the lvs command now supports two new printable
fields: raid_sync_action and raid_mismatch_count. These fields are not printed by default.
To display these fields you specify them with the -o parameter of the lvs, as follows.

lvs -o +raid_sync_action,raid_mismatch_count vg/lv

The raid_sync_action field displays the current synchronization operation that the raid volume is
performing. It can be one of the following values:

idle: All sync operations complete (doing nothing)

resync: Initializing an array or recovering after a machine failure

recover: Replacing a device in the array

check: Looking for array inconsistencies

repair: Looking for and repairing inconsistencies

The raid_mismatch_count field displays the number of discrepancies found during a check
operation.

The Cpy%Sync field of the lvs command now prints the progress of any of the raid_sync_action
operations, including check and repair.

The lv_attr field of the lvs command output now provides additional indicators in support of the
RAID scrubbing operation. Bit 9 of this field displays the health of the logical volume, and it now
supports the following indicators.

(m)ismatches indicates that there are discrepancies in a RAID logical volume. This character is
shown after a scrubbing operation has detected that portions of the RAID are not coherent.

(r)efresh indicates that a device in a RAID array has suffered a failure and the kernel regards it as
failed, even though LVM can read the device label and considers the device to be operational.
The logical volume should be (r)efreshed to notify the kernel that the device is now available, or
the device should be (r)eplaced if it is suspected of having failed.

For information on the lvs command, see Section 4.8.2, “Object Display Fields” .

When you perform a RAID scrubbing operation, the background I/O required by the sync operations
can crowd out other I/O operations to LVM devices, such as updates to volume group metadata. This
can cause the other LVM operations to slow down. You can control the rate at which the RAID logical
volume is scrubbed by implementing recovery throttling.

You control the rate at which sync operations are performed by setting the minimum and maximum
I/O rate for those operations with the --minrecoveryrate and --maxrecoveryrate options of the
lvchange command. You specify these options as follows.

--maxrecoveryrate Rate[bBsSkKmMgG]

Logical Volume Manager Administ rat ion

54

Sets the maximum recovery rate for a RAID logical volume so that it will not crowd out nominal I/O
operations. The Rate is specified as an amount per second for each device in the array. If no
suffix is given, then kiB/sec/device is assumed. Setting the recovery rate to 0 means it will be
unbounded.

--minrecoveryrate Rate[bBsSkKmMgG]

Sets the minimum recovery rate for a RAID logical volume to ensure that I/O for sync operations
achieves a minimum throughput, even when heavy nominal I/O is present. The Rate is specified as
an amount per second for each device in the array. If no suffix is given, then kiB/sec/device is
assumed.

4.4 .3.12. RAID T akeo ver (Red Hat Ent erprise Linux 7 .4 and Lat er)

LVM supports Raid takeover, which means converting a RAID logical volume from one RAID level to
another (such as from RAID 5 to RAID 6). Changing the RAID level is usually done to increase or
decrease resilience to device failures or to restripe logical volumes. You use the lvconvert for RAID
takeover. For information on RAID takeover and for examples of using the lvconvert to convert a
RAID logical volume, see the lvmraid (7) man page.

4.4 .3.13. Reshaping a RAID Lo gical Vo lume (Red Hat Ent erprise Linux 7 .4 and Lat er)

RAID reshaping means changing attributes of a RAID logical volume while keeping the same RAID
level. Some attributes you can change include RAID layout, stripe size, and number of stripes. For
information on RAID reshaping and examples of using the lvconvert command to reshape a RAID
logical volume, see the lvmraid (7) man page.

4.4 .3.14. Co nt ro lling I/O Operat io ns o n a RAID1 Lo gical Vo lume

You can control the I/O operations for a device in a RAID1 logical volume by using the --
writemostly and --writebehind parameters of the lvchange command. The format for using
these parameters is as follows.

--[raid]writemostly PhysicalVolume[:{t|y|n}]

Marks a device in a RAID1 logical volume as write-mostly. All reads to these drives will be
avoided unless necessary. Setting this parameter keeps the number of I/O operations to the drive
to a minimum. By default, the write-mostly attribute is set to yes for the specified physical
volume in the logical volume. It is possible to remove the write-mostly flag by appending :n to
the physical volume or to toggle the value by specifying :t. The --writemostly argument can
be specified more than one time in a single command, making it possible to toggle the write-mostly
attributes for all the physical volumes in a logical volume at once.

--[raid]writebehind IOCount

Specifies the maximum number of outstanding writes that are allowed to devices in a RAID1
logical volume that are marked as write-mostly. Once this value is exceeded, writes become
synchronous, causing all writes to the constituent devices to complete before the array signals the
write has completed. Setting the value to zero clears the preference and allows the system to
choose the value arbitrarily.

4.4 .3.15. Changing t he regio n size o n a RAID Lo gical Vo lume (Red Hat Ent erprise
Linux 7 .4 and lat er)

When you create a RAID logical volume, the region size for the logical volume will be the value of the
raid_region_size parameter in the /etc/lvm/lvm.conf file. You can override this default
value with the -R option of the lvcreate command.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

55

After you have created a RAID logical volume, you can change the region size of the volume with the
-R option of the lvconvert command. The following example changes the region size of logical
volume vg/raidlv to 4096K. The RAID volume must be synced in order to change the region size.

lvconvert -R 4096K vg/raid1
Do you really want to change the region_size 512.00 KiB of LV vg/raid1 to
4.00 MiB? [y/n]: y
 Changed region size on RAID LV vg/raid1 to 4.00 MiB.

4 .4 .4 . Creat ing Mirrored Volumes

For the Red Hat Enterprise Linux 7.0 release, LVM supports RAID 1/4/5/6/10, as described in
Section 4.4.3, “RAID Logical Volumes” . RAID logical volumes are not cluster-aware. While RAID
logical volumes can be created and activated exclusively on one machine, they cannot be activated
simultaneously on more than one machine. If you require non-exclusive mirrored volumes, you must
create the volumes with a mirror segment type, as described in this section.

Note

For information on converting an existing LVM device with a segment type of mirror to a
RAID1 LVM device, see Section 4.4.3.4, “Converting a Mirrored LVM Device to a RAID1 Device” .

Note

Creating a mirrored LVM logical volume in a cluster requires the same commands and
procedures as creating a mirrored LVM logical volume with a segment type of mirror on a
single node. However, in order to create a mirrored LVM volume in a cluster, the cluster and
cluster mirror infrastructure must be running, the cluster must be quorate, and the locking type
in the lvm.conf file must be set correctly to enable cluster locking. For an example of
creating a mirrored volume in a cluster, see Section 5.5, “Creating a Mirrored LVM Logical
Volume in a Cluster” .

Attempting to run multiple LVM mirror creation and conversion commands in quick succession
from multiple nodes in a cluster might cause a backlog of these commands. This might cause
some of the requested operations to time out and, subsequently, fail. To avoid this issue, it is
recommended that cluster mirror creation commands be executed from one node of the cluster.

When you create a mirrored volume, you specify the number of copies of the data to make with the -m
argument of the lvcreate command. Specifying -m1 creates one mirror, which yields two copies of
the file system: a linear logical volume plus one copy. Similarly, specifying -m2 creates two mirrors,
yielding three copies of the file system.

The following command creates a mirrored logical volume with a single mirror. The volume is 50
gigabytes in size, is named mirrorlv, and is carved out of volume group vg0 :

lvcreate --type mirror -L 50G -m 1 -n mirrorlv vg0

Logical Volume Manager Administ rat ion

56

An LVM mirror divides the device being copied into regions that, by default, are 512KB in size. You
can use the -R argument of the lvcreate command to specify the region size in megabytes. You
can also change the default region size by editing the mirror_region_size setting in the
lvm.conf file.

Note

Due to limitations in the cluster infrastructure, cluster mirrors greater than 1.5TB cannot be
created with the default region size of 512KB. Users that require larger mirrors should increase
the region size from its default to something larger. Failure to increase the region size will
cause LVM creation to hang and may hang other LVM commands as well.

As a general guideline for specifying the region size for mirrors that are larger than 1.5TB, you
could take your mirror size in terabytes and round up that number to the next power of 2,
using that number as the -R argument to the lvcreate command. For example, if your mirror
size is 1.5TB, you could specify -R 2. If your mirror size is 3TB, you could specify -R 4 . For
a mirror size of 5TB, you could specify -R 8.

The following command creates a mirrored logical volume with a region size of 2MB:

lvcreate --type mirror -m 1 -L 2T -R 2 -n mirror vol_group

When a mirror is created, the mirror regions are synchronized. For large mirror components, the sync
process may take a long time. When you are creating a new mirror that does not need to be revived,
you can specify the --nosync argument to indicate that an initial synchronization from the first
device is not required.

LVM maintains a small log which it uses to keep track of which regions are in sync with the mirror or
mirrors. By default, this log is kept on disk, which keeps it persistent across reboots and ensures that
the mirror does not need to be re-synced every time a machine reboots or crashes. You can specify
instead that this log be kept in memory with the --mirrorlog core argument; this eliminates the
need for an extra log device, but it requires that the entire mirror be resynchronized at every reboot.

The following command creates a mirrored logical volume from the volume group bigvg . The logical
volume is named ondiskmirvol and has a single mirror. The volume is 12MB in size and keeps
the mirror log in memory.

lvcreate --type mirror -L 12MB -m 1 --mirrorlog core -n ondiskmirvol
bigvg
 Logical volume "ondiskmirvol" created

The mirror log is created on a separate device from the devices on which any of the mirror legs are
created. It is possible, however, to create the mirror log on the same device as one of the mirror legs
by using the --alloc anywhere argument of the vgcreate command. This may degrade
performance, but it allows you to create a mirror even if you have only two underlying devices.

The following command creates a mirrored logical volume with a single mirror for which the mirror log
is on the same device as one of the mirror legs. In this example, the volume group vg0 consists of
only two devices. This command creates a 500 MB volume named mirrorlv in the vg0 volume
group.

lvcreate --type mirror -L 500M -m 1 -n mirrorlv -alloc anywhere vg0

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

57

Note

With clustered mirrors, the mirror log management is completely the responsibility of the cluster
node with the currently lowest cluster ID. Therefore, when the device holding the cluster mirror
log becomes unavailable on a subset of the cluster, the clustered mirror can continue
operating without any impact, as long as the cluster node with lowest ID retains access to the
mirror log. Since the mirror is undisturbed, no automatic corrective action (repair) is issued,
either. When the lowest-ID cluster node loses access to the mirror log, however, automatic
action will kick in (regardless of accessibility of the log from other nodes).

To create a mirror log that is itself mirrored, you can specify the --mirrorlog mirrored argument.
The following command creates a mirrored logical volume from the volume group bigvg . The logical
volume is named twologvol and has a single mirror. The volume is 12MB in size and the mirror
log is mirrored, with each log kept on a separate device.

lvcreate --type mirror -L 12MB -m 1 --mirrorlog mirrored -n twologvol
bigvg
 Logical volume "twologvol" created

Just as with a standard mirror log, it is possible to create the redundant mirror logs on the same
device as the mirror legs by using the --alloc anywhere argument of the vgcreate command.
This may degrade performance, but it allows you to create a redundant mirror log even if you do not
have sufficient underlying devices for each log to be kept on a separate device than the mirror legs.

When a mirror is created, the mirror regions are synchronized. For large mirror components, the sync
process may take a long time. When you are creating a new mirror that does not need to be revived,
you can specify the --nosync argument to indicate that an initial synchronization from the first
device is not required.

You can specify which devices to use for the mirror legs and log, and which extents of the devices to
use. To force the log onto a particular disk, specify exactly one extent on the disk on which it will be
placed. LVM does not necessary respect the order in which devices are listed in the command line. If
any physical volumes are listed that is the only space on which allocation will take place. Any
physical extents included in the list that are already allocated will get ignored.

The following command creates a mirrored logical volume with a single mirror and a single log that is
not mirrored. The volume is 500 MB in size, it is named mirrorlv, and it is carved out of volume
group vg0 . The first leg of the mirror is on device /dev/sda1, the second leg of the mirror is on
device /dev/sdb1, and the mirror log is on /dev/sdc1.

lvcreate --type mirror -L 500M -m 1 -n mirrorlv vg0 /dev/sda1
/dev/sdb1 /dev/sdc1

The following command creates a mirrored logical volume with a single mirror. The volume is 500 MB
in size, it is named mirrorlv, and it is carved out of volume group vg0 . The first leg of the mirror is
on extents 0 through 499 of device /dev/sda1, the second leg of the mirror is on extents 0 through
499 of device /dev/sdb1, and the mirror log starts on extent 0 of device /dev/sdc1. These are
1MB extents. If any of the specified extents have already been allocated, they will be ignored.

lvcreate --type mirror -L 500M -m 1 -n mirrorlv vg0 /dev/sda1:0-499
/dev/sdb1:0-499 /dev/sdc1:0

Logical Volume Manager Administ rat ion

58

Note

You can combine striping and mirroring in a single logical volume. Creating a logical volume
while simultaneously specifying the number of mirrors (--mirrors X) and the number of
stripes (--stripes Y) results in a mirror device whose constituent devices are striped.

4.4 .4 .1 . Mirro red Lo gical Vo lume Failure Po licy

You can define how a mirrored logical volume behaves in the event of a device failure with the
mirror_image_fault_policy and mirror_log_fault_policy parameters in the
activation section of the lvm.conf file. When these parameters are set to remove, the system
attempts to remove the faulty device and run without it. When these parameters are set to allocate,
the system attempts to remove the faulty device and tries to allocate space on a new device to be a
replacement for the failed device. This policy acts like the remove policy if no suitable device and
space can be allocated for the replacement.

By default, the mirror_log_fault_policy parameter is set to allocate. Using this policy for
the log is fast and maintains the ability to remember the sync state through crashes and reboots. If
you set this policy to remove, when a log device fails the mirror converts to using an in-memory log;
in this instance, the mirror will not remember its sync status across crashes and reboots and the
entire mirror will be re-synced.

By default, the mirror_image_fault_policy parameter is set to remove. With this policy, if a
mirror image fails the mirror will convert to a non-mirrored device if there is only one remaining good
copy. Setting this policy to allocate for a mirror device requires the mirror to resynchronize the
devices; this is a slow process, but it preserves the mirror characteristic of the device.

Note

When an LVM mirror suffers a device failure, a two-stage recovery takes place. The first stage
involves removing the failed devices. This can result in the mirror being reduced to a linear
device. The second stage, if the mirror_log_fault_policy parameter is set to
allocate, is to attempt to replace any of the failed devices. Note, however, that there is no
guarantee that the second stage will choose devices previously in-use by the mirror that had
not been part of the failure if others are available.

For information on manually recovering from an LVM mirror failure, refer to Section 6.3,
“Recovering from LVM Mirror Failure” .

4.4 .4 .2 . Split t ing Off a Redundant Image o f a Mirro red Lo gical Vo lume

You can split off a redundant image of a mirrored logical volume to form a new logical volume. To
split off an image, use the --splitmirrors argument of the lvconvert command, specifying the
number of redundant images to split off. You must use the --name argument of the command to
specify a name for the newly-split-off logical volume.

The following command splits off a new logical volume named copy from the mirrored logical volume
vg/lv. The new logical volume contains two mirror legs. In this example, LVM selects which devices
to split off.

lvconvert --splitmirrors 2 --name copy vg/lv

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

59

You can specify which devices to split off. The following command splits off a new logical volume
named copy from the mirrored logical volume vg/lv. The new logical volume contains two mirror
legs consisting of devices /dev/sdc1 and /dev/sde1.

lvconvert --splitmirrors 2 --name copy vg/lv /dev/sd[ce]1

4.4 .4 .3. Repairing a Mirro red Lo gical Device

You can use the lvconvert --repair command to repair a mirror after a disk failure. This brings
the mirror back into a consistent state. The lvconvert --repair command is an interactive
command that prompts you to indicate whether you want the system to attempt to replace any failed
devices.

To skip the prompts and replace all of the failed devices, specify the -y option on the command
line.

To skip the prompts and replace none of the failed devices, specify the -f option on the command
line.

To skip the prompts and still indicate different replacement policies for the mirror image and the
mirror log, you can specify the --use-policies argument to use the device replacement
policies specified by the mirror_log_fault_policy and mirror_device_fault_policy
parameters in the lvm.conf file.

4.4 .4 .4 . Changing Mirro red Vo lume Co nfigurat io n

You can increase or decrease the number of mirrors that a logical volume contains by using the
lvconvert command. This allows you to convert a logical volume from a mirrored volume to a
linear volume or from a linear volume to a mirrored volume. You can also use this command to
reconfigure other mirror parameters of an existing logical volume, such as corelog .

When you convert a linear volume to a mirrored volume, you are creating mirror legs for an existing
volume. This means that your volume group must contain the devices and space for the mirror legs
and for the mirror log.

If you lose a leg of a mirror, LVM converts the volume to a linear volume so that you still have access
to the volume, without the mirror redundancy. After you replace the leg, use the lvconvert command
to restore the mirror. This procedure is provided in Section 6.3, “Recovering from LVM Mirror Failure” .

The following command converts the linear logical volume vg00/lvol1 to a mirrored logical
volume.

lvconvert -m1 vg00/lvol1

The following command converts the mirrored logical volume vg00/lvol1 to a linear logical
volume, removing the mirror leg.

lvconvert -m0 vg00/lvol1

The following example adds an additional mirror leg to the existing logical volume vg00/lvol1.
This example shows the configuration of the volume before and after the lvconvert command
changed the volume to a volume with two mirror legs.

lvs -a -o name,copy_percent,devices vg00
 LV Copy% Devices

Logical Volume Manager Administ rat ion

60

 lvol1 100.00 lvol1_mimage_0(0),lvol1_mimage_1(0)
 [lvol1_mimage_0] /dev/sda1(0)
 [lvol1_mimage_1] /dev/sdb1(0)
 [lvol1_mlog] /dev/sdd1(0)
lvconvert -m 2 vg00/lvol1
 vg00/lvol1: Converted: 13.0%
 vg00/lvol1: Converted: 100.0%
 Logical volume lvol1 converted.
lvs -a -o name,copy_percent,devices vg00
 LV Copy% Devices
 lvol1 100.00
lvol1_mimage_0(0),lvol1_mimage_1(0),lvol1_mimage_2(0)
 [lvol1_mimage_0] /dev/sda1(0)
 [lvol1_mimage_1] /dev/sdb1(0)
 [lvol1_mimage_2] /dev/sdc1(0)
 [lvol1_mlog] /dev/sdd1(0)

4 .4 .5. Creat ing T hinly-Provisioned Logical Volumes

Logical volumes can be thinly provisioned. This allows you to create logical volumes that are larger
than the available extents. Using thin provisioning, you can manage a storage pool of free space,
known as a thin pool, which can be allocated to an arbitrary number of devices when needed by
applications. You can then create devices that can be bound to the thin pool for later allocation
when an application actually writes to the logical volume. The thin pool can be expanded
dynamically when needed for cost-effective allocation of storage space.

Note

This section provides an overview of the basic commands you use to create and grow thinly-
provisioned logical volumes. For detailed information on LVM thin provisioning as well as
information on using the LVM commands and utilities with thinly-provisioned logical volumes,
see the lvmthin(7) man page.

Note

Thin volumes are not supported across the nodes in a cluster. The thin pool and all its thin
volumes must be exclusively activated on only one cluster node.

To create a thin volume, perform the following tasks:

1. Create a volume group with the vgcreate command.

2. Create a thin pool with the lvcreate command.

3. Create a thin volume in the thin pool with the lvcreate command.

You can use the -T (or --thin) option of the lvcreate command to create either a thin pool or a
thin volume. You can also use -T option of the lvcreate command to create both a thin pool and a
thin volume in that pool at the same time with a single command.

The following command uses the -T option of the lvcreate command to create a thin pool named
mythinpool in the volume group vg001 and that is 100M in size. Note that since you are creating

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

61

a pool of physical space, you must specify the size of the pool. The -T option of the lvcreate
command does not take an argument; it deduces what type of device is to be created from the other
options the command specifies.

lvcreate -L 100M -T vg001/mythinpool
 Rounding up size to full physical extent 4.00 MiB
 Logical volume "mythinpool" created
lvs
 LV VG Attr LSize Pool Origin Data% Move Log
Copy% Convert
 my mythinpool vg001 twi-a-tz 100.00m 0.00

The following command uses the -T option of the lvcreate command to create a thin volume
named thinvolume in the thin pool vg001/mythinpool . Note that in this case you are specifying
virtual size, and that you are specifying a virtual size for the volume that is greater than the pool that
contains it.

lvcreate -V 1G -T vg001/mythinpool -n thinvolume
 Logical volume "thinvolume" created
lvs
 LV VG Attr LSize Pool Origin Data% Move
Log Copy% Convert
 mythinpool vg001 twi-a-tz 100.00m 0.00
 thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

The following command uses the -T option of the lvcreate command to create a thin pool and a
thin volume in that pool by specifying both a size and a virtual size argument for the lvcreate
command. This command creates a thin pool named mythinpool in the volume group vg001 and
it also creates a thin volume named thinvolume in that pool.

lvcreate -L 100M -T vg001/mythinpool -V 1G -n thinvolume
 Rounding up size to full physical extent 4.00 MiB
 Logical volume "thinvolume" created
lvs
 LV VG Attr LSize Pool Origin Data% Move Log
Copy% Convert
 mythinpool vg001 twi-a-tz 100.00m 0.00
 thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

You can also create a thin pool by specifying the --thinpool parameter of the lvcreate
command. Unlike the -T option, the --thinpool parameter requires an argument, which is the
name of the thin pool logical volume that you are creating. The following example specifies the --
thinpool parameter of the lvcreate command to create a thin pool named mythinpool in the
volume group vg001 and that is 100M in size:

lvcreate -L 100M --thinpool mythinpool vg001
 Rounding up size to full physical extent 4.00 MiB
 Logical volume "mythinpool" created
lvs
 LV VG Attr LSize Pool Origin Data% Move Log Copy%
Convert
 mythinpool vg001 twi-a-tz 100.00m 0.00

Striping is supported for pool creation. The following command creates a 100M thin pool named
pool in volume group vg001 with two 64 kB stripes and a chunk size of 256 kB. It also creates a 1T

Logical Volume Manager Administ rat ion

62

thin volume, vg00/thin_lv.

lvcreate -i 2 -I 64 -c 256 -L 100M -T vg00/pool -V 1T --name thin_lv

You can extend the size of a thin volume with the lvextend command. You cannot, however, reduce
the size of a thin pool.

The following command resizes an existing thin pool that is 100M in size by extending it another
100M.

lvextend -L+100M vg001/mythinpool
 Extending logical volume mythinpool to 200.00 MiB
 Logical volume mythinpool successfully resized
lvs
 LV VG Attr LSize Pool Origin Data% Move Log
Copy% Convert
 mythinpool vg001 twi-a-tz 200.00m 0.00
 thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

As with other types of logical volumes, you can rename the volume with the lvrename, you can
remove the volume with the lvremove, and you can display information about the volume with the
lvs and lvdisplay commands.

By default, the lvcreate command sets the size of the thin pool's metadata logical volume
according to the formula (Pool_LV_size / Pool_LV_chunk_size * 64). If you will have large numbers of
snapshots or if you have have small chunk sizes for your thin pool and thus expect significant
growth of the size of the thin pool at a later time, you may need to increase the default value of the
thin pool's metadata volume with the --poolmetadatasize parameter of the lvcreate command.
The supported value for the thin pool's metadata logical volume is in the range between 2MiB and
16GiB.

You can use the --thinpool parameter of the lvconvert command to convert an existing logical
volume to a thin pool volume. When you convert an existing logical volume to a thin pool volume,
you must use the --poolmetadata parameter in conjunction with the --thinpool parameter of
the lvconvert to convert an existing logical volume to the thin pool volume's metadata volume.

Note

Converting a logical volume to a thin pool volume or a thin pool metadata volume destroys the
content of the logical volume, since in this case the lvconvert does not preserve the content
of the devices but instead overwrites the content.

The following example converts the existing logical volume lv1 in volume group vg001 to a thin
pool volume and converts the existing logical volume lv2 in volume group vg001 to the metadata
volume for that thin pool volume.

lvconvert --thinpool vg001/lv1 --poolmetadata vg001/lv2
 Converted vg001/lv1 to thin pool.

4 .4 .6. Creat ing Snapshot Volumes

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

63

Note

LVM supports thinly-provisioned snapshots. For information on creating thinly-provisioned
snapshot volumes, refer to Section 4.4.7, “Creating Thinly-Provisioned Snapshot Volumes” .

Use the -s argument of the lvcreate command to create a snapshot volume. A snapshot volume is
writable.

Note

LVM snapshots are not supported across the nodes in a cluster. You cannot create a
snapshot volume in a clustered volume group. However, if you need to create a consistent
backup of data on a clustered logical volume you can activate the volume exclusively and
then create the snapshot. For information on activating logical volumes exclusively on one
node, see Section 4.7, “Activating Logical Volumes on Individual Nodes in a Cluster” .

Note

LVM snapshots are supported for mirrored logical volumes.

Snapshots are supported for RAID logical volumes. For information on creating RAID logical
volumes, refer to Section 4.4.3, “RAID Logical Volumes” .

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume
plus needed metadata for the volume. If you specify a snapshot volume that is larger than this, the
system will create a snapshot volume that is only as large as will be needed for the size of the origin.

By default, a snapshot volume is skipped during normal activation commands. For information on
controlling the activation of a snapshot volume, see Section 4.4.18, “Controlling Logical Volume
Activation” .

The following command creates a snapshot logical volume that is 100 MB in size named
/dev/vg00/snap. This creates a snapshot of the origin logical volume named
/dev/vg00/lvol1. If the original logical volume contains a file system, you can mount the
snapshot logical volume on an arbitrary directory in order to access the contents of the file system to
run a backup while the original file system continues to get updated.

lvcreate --size 100M --snapshot --name snap /dev/vg00/lvol1

After you create a snapshot logical volume, specifying the origin volume on the lvdisplay
command yields output that includes a list of all snapshot logical volumes and their status (active or
inactive).

The following example shows the status of the logical volume /dev/new_vg/lvol0 , for which a
snapshot volume /dev/new_vg/newvgsnap has been created.

lvdisplay /dev/new_vg/lvol0
 --- Logical volume ---
 LV Name /dev/new_vg/lvol0

Logical Volume Manager Administ rat ion

64

 VG Name new_vg
 LV UUID LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
 LV Write Access read/write
 LV snapshot status source of
 /dev/new_vg/newvgsnap1 [active]
 LV Status available
 # open 0
 LV Size 52.00 MB
 Current LE 13
 Segments 1
 Allocation inherit
 Read ahead sectors 0
 Block device 253:2

The lvs command, by default, displays the origin volume and the current percentage of the
snapshot volume being used. The following example shows the default output for the lvs command
for a system that includes the logical volume /dev/new_vg/lvol0 , for which a snapshot volume
/dev/new_vg/newvgsnap has been created.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 lvol0 new_vg owi-a- 52.00M
 newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

Warning

Because the snapshot increases in size as the origin volume changes, it is important to
monitor the percentage of the snapshot volume regularly with the lvs command to be sure it
does not fill. A snapshot that is 100% full is lost completely, as a write to unchanged parts of
the origin would be unable to succeed without corrupting the snapshot.

In addition to the snapshot itself being invalidated when full, any mounted file systems on that
snapshot device are forcibly unmounted, avoiding the inevitable file system errors upon access to
the mount point. In addition, you can specify the snapshot_autoextend_threshold option in the
lvm.conf file. This option allows automatic extension of a snapshot whenever the remaining
snapshot space drops below the threshold you set. This feature requires that there be unallocated
space in the volume group.

LVM does not allow you to create a snapshot volume that is larger than the size of the origin volume
plus needed metadata for the volume. Similarly, automatic extension of a snapshot will not increase
the size of a snapshot volume beyond the maximum calculated size that is necessary for the
snapshot. Once a snapshot has grown large enough to cover the origin, it is no longer monitored for
automatic extension.

Information on setting snapshot_autoextend_threshold and
snapshot_autoextend_percent is provided in the lvm.conf file itself. For information about the
lvm.conf file, refer to Appendix B, The LVM Configuration Files.

4 .4 .7. Creat ing T hinly-Provisioned Snapshot Volumes

Red Hat Enterprise Linux provides support for thinly-provisioned snapshot volumes. For information
on the benefits and limitations of thin snapshot volumes, refer to Section 2.3.6, “Thinly-Provisioned
Snapshot Volumes” .

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

65

Note

This section provides an overview of the basic commands you use to create and grow thinly-
provisioned snapshot volumes. For detailed information on LVM thin provisioning as well as
information on using the LVM commands and utilities with thinly-provisioned logical volumes,
see the lvmthin(7) man page.

Important

When creating a thin snapshot volume, you do not specify the size of the volume. If you
specify a size parameter, the snapshot that will be created will not be a thin snapshot volume
and will not use the thin pool for storing data. For example, the command lvcreate -s
vg/thinvolume -L10M will not create a thin snapshot, even though the origin volume is a
thin volume.

Thin snapshots can be created for thinly-provisioned origin volumes, or for origin volumes that are
not thinly-provisioned.

You can specify a name for the snapshot volume with the --name option of the lvcreate command.
The following command creates a thinly-provisioned snapshot volume of the thinly-provisioned
logical volume vg001/thinvolume that is named mysnapshot1.

lvcreate -s --name mysnapshot1 vg001/thinvolume
 Logical volume "mysnapshot1" created
lvs
 LV VG Attr LSize Pool Origin Data%
Move Log Copy% Convert
 mysnapshot1 vg001 Vwi-a-tz 1.00g mythinpool thinvolume 0.00
 mythinpool vg001 twi-a-tz 100.00m 0.00
 thinvolume vg001 Vwi-a-tz 1.00g mythinpool 0.00

A thin snapshot volume has the same characteristics as any other thin volume. You can
independently activate the volume, extend the volume, rename the volume, remove the volume, and
even snapshot the volume.

By default, a snapshot volume is skipped during normal activation commands. For information on
controlling the activation of a snapshot volume, see Section 4.4.18, “Controlling Logical Volume
Activation” .

You can also create a thinly-provisioned snapshot of a non-thinly-provisioned logical volume. Since
the non-thinly-provisioned logical volume is not contained within a thin pool, it is referred to as an
external origin. External origin volumes can be used and shared by many thinly-provisioned snapshot
volumes, even from different thin pools. The external origin must be inactive and read-only at the time
the thinly-provisioned snapshot is created.

To create a thinly-provisioned snapshot of an external origin, you must specify the --thinpool
option. The following command creates a thin snapshot volume of the read-only inactive volume
origin_volume. The thin snapshot volume is named mythinsnap. The logical volume
origin_volume then becomes the thin external origin for the thin snapshot volume mythinsnap
in volume group vg001 that will use the existing thin pool vg001/pool . Because the origin volume
must be in the same volume group as the snapshot volume, you do not need to specify the volume
group when specifying the origin logical volume.

Logical Volume Manager Administ rat ion

66

lvcreate -s --thinpool vg001/pool origin_volume --name mythinsnap

You can create a second thinly-provisioned snapshot volume of the first snapshot volume, as in the
following command.

lvcreate -s vg001/mythinsnap --name my2ndthinsnap

As of Red Hat Enterprise Linux 7.2, you can display a list of all ancestors and descendants of a thin
snapshot logical volume by specifying the lv_ancestors and lv_descendants reporting fields of
the lvs command.

In the following example:

stack1 is an origin volume in volume group vg001.

stack2 is a snapshot of stack1

stack3 is a snapshot of stack2

stack4 is a snapshot of stack3

Additionally:

stack5 is also a snapshot of stack2

stack6 is a snapshot of stack5

$ lvs -o name,lv_ancestors,lv_descendants vg001
 LV Ancestors Descendants
 stack1 stack2,stack3,stack4,stack5,stack6
 stack2 stack1 stack3,stack4,stack5,stack6
 stack3 stack2,stack1 stack4
 stack4 stack3,stack2,stack1
 stack5 stack2,stack1 stack6
 stack6 stack5,stack2,stack1
 pool

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

67

Note

The lv_ancestors and lv_descendants fields display existing dependencies but do not
track removed entries which can break a dependency chain if the entry was removed from the
middle of the chain. For example, if you remove the logical volume stack3 from this sample
configuration, the display is as follows.

$ lvs -o name,lv_ancestors,lv_descendants vg001
 LV Ancestors Descendants
 stack1 stack2,stack5,stack6
 stack2 stack1 stack5,stack6
 stack4
 stack5 stack2,stack1 stack6
 stack6 stack5,stack2,stack1
 pool

As of Red Hat Enterprise Linux 7.3, however, you can configure your system to track and
display logical volumes that have been removed, and you can display the full dependency
chain that includes those volumes by specifying the lv_ancestors_full and
lv_descendants_full fields. For information on tracking, displaying, and removing
historical logical volumes, see Section 4.4.19, “Tracking and Displaying Historical Logical
Volumes (Red Hat Enterprise Linux 7.3 and Later)” .

4 .4 .8. Creat ing LVM Cache Logical Volumes

As of the Red Hat Enterprise Linux 7.1 release, LVM provides full support for LVM cache logical
volumes. A cache logical volume uses a small logical volume consisting of fast block devices (such
as SSD drives) to improve the performance of a larger and slower logical volume by storing the
frequently used blocks on the smaller, faster logical volume.

LVM caching uses the following LVM logical volume types. All of these associated logical volumes
must be in the same volume group.

Origin logical volume — the large, slow logical volume

Cache pool logical volume — the small, fast logical volume, which is composed of two devices:
the cache data logical volume, and the cache metadata logical volume

Cache data logical volume — the logical volume containing the data blocks for the cache pool
logical volume

Cache metadata logical volume — the logical volume containing the metadata for the cache pool
logical volume, which holds the accounting information that specifies where data blocks are
stored (for example, on the origin logical volume or the cache data logical volume).

Cache logical volume — the logical volume containing the origin logical volume and the cache
pool logical volume. This is the resultant usable device which encapsulates the various cache
volume components.

The following procedure creates an LVM cache logical volume.

1. Create a volume group that contains a slow physical volume and a fast physical volume. In
this example. /dev/sde1 is a slow device and /dev/sdf1 is a fast device and both devices
are contained in volume group VG .

Logical Volume Manager Administ rat ion

68

pvcreate /dev/sde1
pvcreate /dev/sdf1
vgcreate VG /dev/sde1 /dev/sdf1

2. Create the origin volume. This example creates an origin volume named lv that is ten
gigabytes in size and that consists of /dev/sde1, the slow physical volume.

lvcreate -L 10G -n lv VG /dev/sde1

3. Create the cache pool logical volume. This example creates the cache pool logical volume
named cpool on the fast device /dev/sdf1, which is part of the volume group VG . The
cache pool logical volume this command creates consists of the hidden cache data logical
volume cpool_cdata and the hidden cache metadata logical volume cpool_cmeta.

lvcreate --type cache-pool -L 5G -n cpool VG /dev/sdf1
 Using default stripesize 64.00 KiB.
 Logical volume "cpool" created.
lvs -a -o name,size,attr,devices VG
 LV LSize Attr Devices
 [cpool] 5.00g Cwi---C--- cpool_cdata(0)
 [cpool_cdata] 5.00g Cwi-ao---- /dev/sdf1(4)
 [cpool_cmeta] 8.00m ewi-ao---- /dev/sdf1(2)

For more complicated configurations you may need to create the cache data and the cache
metadata logical volumes individually and then combine the volumes into a cache pool
logical volume. For information on this procedure, see the lvmcache(7) man page.

4. Create the cache logical volume by linking the cache pool logical volume to the origin logical
volume. The resulting user-accessible cache logical volume takes the name of the origin
logical volume. The origin logical volume becomes a hidden logical volume with _corig
appended to the original name.

lvconvert --type cache --cachepool VG/lv cpool
 Logical volume cpool is now cached.
lvs -a -o name,size,attr,devices vg
 LV LSize Attr Devices
 [cpool] 5.00g Cwi---C--- cpool_cdata(0)
 [cpool_cdata] 5.00g Cwi-ao---- /dev/sdf1(4)
 [cpool_cmeta] 8.00m ewi-ao---- /dev/sdf1(2)
 lv 10.00g Cwi-a-C--- lv_corig(0)
 [lv_corig] 10.00g owi-aoC--- /dev/sde1(0)
 [lvol0_pmspare] 8.00m ewi------- /dev/sdf1(0)

5. Optionally, as of Red Hat Enterprise Linux release 7.2, you can convert the cached logical
volume to a thin pool logical volume. Note that any thin logical volumes created from the pool
will share the cache.

The following command uses the fast device, /dev/sdf1, for allocating the thin pool
metadata (lv_tmeta). This is the same device that is used by the cache pool volume, which
means that the thin pool metadata volume shares that device with both the cache data logical
volume cpool_cdata and the cache metadata logical volume cpool_cmeta.

lvconvert --type thin-pool VG/lv /dev/sdf1
 WARNING: Converting logical volume VG/lv to thin pool's data
volume with metadata wiping.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

69

 THIS WILL DESTROY CONTENT OF LOGICAL VOLUME (filesystem etc.)
 Do you really want to convert VG/lv? [y/n]: y
 Converted VG/lv to thin pool.
lvs -a -o name,size,attr,devices vg
 LV LSize Attr Devices
 [cpool] 5.00g Cwi---C--- cpool_cdata(0)
 [cpool_cdata] 5.00g Cwi-ao---- /dev/sdf1(4)
 [cpool_cmeta] 8.00m ewi-ao---- /dev/sdf1(2)
 lv 10.00g twi-a-tz-- lv_tdata(0)
 [lv_tdata] 10.00g Cwi-aoC--- lv_tdata_corig(0)
 [lv_tdata_corig] 10.00g owi-aoC--- /dev/sde1(0)
 [lv_tmeta] 12.00m ewi-ao---- /dev/sdf1(1284)
 [lvol0_pmspare] 12.00m ewi------- /dev/sdf1(0)
 [lvol0_pmspare] 12.00m ewi------- /dev/sdf1(1287)

For further information on LVM cache volumes, including additional administrative examples, see the
lvmcache(7) man page.

For information on creating thinly-provisioned logical volumes, see Section 4.4.5, “Creating Thinly-
Provisioned Logical Volumes” .

4 .4 .9. Merging Snapshot Volumes

You can use the --merge option of the lvconvert command to merge a snapshot into its origin
volume. If both the origin and snapshot volume are not open, the merge will start immediately.
Otherwise, the merge will start the first time either the origin or snapshot are activated and both are
closed. Merging a snapshot into an origin that cannot be closed, for example a root file system, is
deferred until the next time the origin volume is activated. When merging starts, the resulting logical
volume will have the origin’s name, minor number and UUID. While the merge is in progress, reads or
writes to the origin appear as they were directed to the snapshot being merged. When the merge
finishes, the merged snapshot is removed.

The following command merges snapshot volume vg00/lvol1_snap into its origin.

lvconvert --merge vg00/lvol1_snap

You can specify multiple snapshots on the command line, or you can use LVM object tags to specify
that multiple snapshots be merged to their respective origins. In the following example, logical
volumes vg00/lvol1, vg00/lvol2, and vg00/lvol3 are all tagged with the tag @some_tag .
The following command merges the snapshot logical volumes for all three volumes serially:
vg00/lvol1, then vg00/lvol2, then vg00/lvol3. If the --background option were used, all
snapshot logical volume merges would start in parallel.

lvconvert --merge @some_tag

For information on tagging LVM objects, see Appendix D, LVM Object Tags. For further information on
the lvconvert --merge command, see the lvconvert(8) man page.

4 .4 .10. Persistent Device Numbers

Major and minor device numbers are allocated dynamically at module load. Some applications work
best if the block device is always activated with the same device (major and minor) number. You can
specify these with the lvcreate and the lvchange commands by using the following arguments:

--persistent y --major major --minor minor

Logical Volume Manager Administ rat ion

70

Use a large minor number to be sure that it has not already been allocated to another device
dynamically.

If you are exporting a file system using NFS, specifying the fsid parameter in the exports file may
avoid the need to set a persistent device number within LVM.

4 .4 .11. Reducing Logical Volumes

To reduce the size of a logical volume, use the lvreduce command. If the logical volume contains a
file system, be sure to reduce the file system first so that the logical volume is always at least as large
as the file system expects it to be.

The following command reduces the size of logical volume lvol1 in volume group vg00 by 3
logical extents.

lvreduce -l -3 vg00/lvol1

4 .4 .12. Changing the Parameters of a Logical Volume Group

To change the parameters of a logical volume, use the lvchange command. For a listing of the
parameters you can change, see the lvchange(8) man page.

You can use the lvchange command to activate and deactivate logical volumes. To activate and
deactivate all the logical volumes in a volume group at the same time, use the vgchange command,
as described in Section 4.3.9, “Changing the Parameters of a Volume Group” .

The following command changes the permission on volume lvol1 in volume group vg00 to be
read-only.

lvchange -pr vg00/lvol1

4 .4 .13. Renaming Logical Volumes

To rename an existing logical volume, use the lvrename command.

Either of the following commands renames logical volume lvold in volume group vg02 to lvnew.

lvrename /dev/vg02/lvold /dev/vg02/lvnew

lvrename vg02 lvold lvnew

For more information on activating logical volumes on individual nodes in a cluster, see Section 4.7,
“Activating Logical Volumes on Individual Nodes in a Cluster” .

4 .4 .14 . Removing Logical Volumes

To remove an inactive logical volume, use the lvremove command. If the logical volume is currently
mounted, unmount the volume before removing it. In addition, in a clustered environment you must
deactivate a logical volume before it can be removed.

The following command removes the logical volume /dev/testvg/testlv from the volume group
testvg . Note that in this case the logical volume has not been deactivated.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

71

lvremove /dev/testvg/testlv
Do you really want to remove active logical volume "testlv"? [y/n]: y
 Logical volume "testlv" successfully removed

You could explicitly deactivate the logical volume before removing it with the lvchange -an
command, in which case you would not see the prompt verifying whether you want to remove an
active logical volume.

4 .4 .15. Displaying Logical Volumes

There are three commands you can use to display properties of LVM logical volumes: lvs,
lvdisplay, and lvscan.

The lvs command provides logical volume information in a configurable form, displaying one line
per logical volume. The lvs command provides a great deal of format control, and is useful for
scripting. For information on using the lvs command to customize your output, see Section 4.8,
“Customized Reporting for LVM” .

The lvdisplay command displays logical volume properties (such as size, layout, and mapping)
in a fixed format.

The following command shows the attributes of lvol2 in vg00 . If snapshot logical volumes have
been created for this original logical volume, this command shows a list of all snapshot logical
volumes and their status (active or inactive) as well.

lvdisplay -v /dev/vg00/lvol2

The lvscan command scans for all logical volumes in the system and lists them, as in the following
example.

lvscan
 ACTIVE '/dev/vg0/gfslv' [1.46 GB] inherit

4 .4 .16. Growing Logical Volumes

To increase the size of a logical volume, use the lvextend command.

When you extend the logical volume, you can indicate how much you want to extend the volume, or
how large you want it to be after you extend it.

The following command extends the logical volume /dev/myvg/homevol to 12 gigabytes.

lvextend -L12G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 12 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

The following command adds another gigabyte to the logical volume /dev/myvg/homevol .

lvextend -L+1G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 13 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

Logical Volume Manager Administ rat ion

72

As with the lvcreate command, you can use the -l argument of the lvextend command to specify
the number of extents by which to increase the size of the logical volume. You can also use this
argument to specify a percentage of the volume group, or a percentage of the remaining free space in
the volume group. The following command extends the logical volume called testlv to fill all of the
unallocated space in the volume group myvg .

lvextend -l +100%FREE /dev/myvg/testlv
 Extending logical volume testlv to 68.59 GB
 Logical volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to match.

By default, most file system resizing tools will increase the size of the file system to be the size of the
underlying logical volume so you do not need to worry about specifying the same size for each of the
two commands.

4.4 .16.1 . Ext ending a St riped Vo lume

In order to increase the size of a striped logical volume, there must be enough free space on the
underlying physical volumes that make up the volume group to support the stripe. For example, if
you have a two-way stripe that that uses up an entire volume group, adding a single physical volume
to the volume group will not enable you to extend the stripe. Instead, you must add at least two
physical volumes to the volume group.

For example, consider a volume group vg that consists of two underlying physical volumes, as
displayed with the following vgs command.

vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 2 0 0 wz--n- 271.31G 271.31G

You can create a stripe using the entire amount of space in the volume group.

lvcreate -n stripe1 -L 271.31G -i 2 vg
 Using default stripesize 64.00 KB
 Rounding up size to full physical extent 271.31 GB
 Logical volume "stripe1" created
lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe1 vg -wi-a- 271.31G
/dev/sda1(0),/dev/sdb1(0)

Note that the volume group now has no more free space.

vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 2 1 0 wz--n- 271.31G 0

The following command adds another physical volume to the volume group, which then has 135
gigabytes of additional space.

vgextend vg /dev/sdc1
 Volume group "vg" successfully extended
vgs
 VG #PV #LV #SN Attr VSize VFree

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

73

 vg 3 1 0 wz--n- 406.97G 135.66G

At this point you cannot extend the striped logical volume to the full size of the volume group,
because two underlying devices are needed in order to stripe the data.

lvextend vg/stripe1 -L 406G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 406.00 GB
 Insufficient suitable allocatable extents for logical volume stripe1:
34480
more required

To extend the striped logical volume, add another physical volume and then extend the logical
volume. In this example, having added two physical volumes to the volume group we can extend the
logical volume to the full size of the volume group.

vgextend vg /dev/sdd1
 Volume group "vg" successfully extended
vgs
 VG #PV #LV #SN Attr VSize VFree
 vg 4 1 0 wz--n- 542.62G 271.31G
lvextend vg/stripe1 -L 542G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 542.00 GB
 Logical volume stripe1 successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is
possible to extend the volume anyway if it does not matter that the extension is not striped, which may
result in uneven performance. When adding space to the logical volume, the default operation is to
use the same striping parameters of the last segment of the existing logical volume, but you can
override those parameters. The following example extends the existing striped logical volume to use
the remaining free space after the initial lvextend command fails.

lvextend vg/stripe1 -L 406G
 Using stripesize of last segment 64.00 KB
 Extending logical volume stripe1 to 406.00 GB
 Insufficient suitable allocatable extents for logical volume stripe1:
34480
more required
lvextend -i1 -l+100%FREE vg/stripe1

4.4 .16.2 . Ext ending a RAID Vo lume

You can grow RAID logical volumes with the lvextend command without performing a
synchronization of the new RAID regions.

If you specify the --nosync option when you create a RAID logical volume with the lvcreate
command, the RAID regions are not synchronized when the logical volume is created. If you later
extend a RAID logical volume that you have created with the --nosync option, the RAID extensions
are not synchronized at that time, either.

You can determine whether an existing logical volume was created with the --nosync option by
using the lvs command to display the volume's attributes. A logical volume will show "R" as the first
character in the attribute field if it is a RAID volume that was created without an initial
synchronization, and it will show "r" if it was created with initial synchronization.

Logical Volume Manager Administ rat ion

74

The following command displays the attributes of a RAID logical volume named lv that was created
without initial synchronization, showing "R" as the first character in the attribute field. The seventh
character in the attribute field is " r" , indicating a target type of RAID. For information on the meaning
of the attribute field, refer to Table 4.5, “ lvs Display Fields” .

lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync Convert
 lv vg Rwi-a-r- 5.00g 100.00

If you grow this logical volume with the lvextend command, the RAID extension will not be
resynchronized.

If you created a RAID logical volume without specifying the --nosync option of the lvcreate
command, you can grow the logical volume without resynchronizing the mirror by specifying the --
nosync option of the lvextend command.

The following example extends a RAID logical volume that was created without the --nosync option,
indicated that the RAID volume was synchronized when it was created. This example, however,
specifies that the volume not be synchronized when the volume is extended. Note that the volume has
an attribute of " r" , but after executing the lvextend command with the --nosync option the volume
has an attribute of "R".

lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync
Convert
 lv vg rwi-a-r- 20.00m 100.00
lvextend -L +5G vg/lv --nosync
 Extending 2 mirror images.
 Extending logical volume lv to 5.02 GiB
 Logical volume lv successfully resized
lvs vg
 LV VG Attr LSize Pool Origin Snap% Move Log Cpy%Sync
Convert
 lv vg Rwi-a-r- 5.02g 100.00

If a RAID volume is inactive, it will not automatically skip synchronization when you extend the
volume, even if you create the volume with the --nosync option specified. Instead, you will be
prompted whether to do a full resync of the extended portion of the logical volume.

Note

If a RAID volume is performing recovery, you cannot extend the logical volume if you created
or extended the volume with the --nosync option specified. If you did not specify the --
nosync option, however, you can extend the RAID volume while it is recovering.

4.4 .16.3. Ext ending a Lo gical Vo lume wit h t he cling Allo cat io n Po licy

When extending an LVM volume, you can use the --alloc cling option of the lvextend
command to specify the cling allocation policy. This policy will choose space on the same
physical volumes as the last segment of the existing logical volume. If there is insufficient space on
the physical volumes and a list of tags is defined in the lvm.conf file, LVM will check whether any of
the tags are attached to the physical volumes and seek to match those physical volume tags between
existing extents and new extents.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

75

For example, if you have logical volumes that are mirrored between two sites within a single volume
group, you can tag the physical volumes according to where they are situated by tagging the
physical volumes with @site1 and @site2 tags. You can then specify the following line in the
lvm.conf file:

cling_tag_list = ["@site1", "@site2"]

For information on tagging physical volumes, see Appendix D, LVM Object Tags.

In the following example, the lvm.conf file has been modified to contain the following line:

cling_tag_list = ["@A", "@B"]

Also in this example, a volume group taft has been created that consists of the physical volumes
/dev/sdb1, /dev/sdc1, /dev/sdd1, /dev/sde1, /dev/sdf1, /dev/sdg1, and /dev/sdh1.
These physical volumes have been tagged with tags A, B, and C . The example does not use the C
tag, but this will show that LVM uses the tags to select which physical volumes to use for the mirror
legs.

pvs -a -o +pv_tags /dev/sd[bcdefgh]
 PV VG Fmt Attr PSize PFree PV Tags
 /dev/sdb1 taft lvm2 a-- 15.00g 15.00g A
 /dev/sdc1 taft lvm2 a-- 15.00g 15.00g B
 /dev/sdd1 taft lvm2 a-- 15.00g 15.00g B
 /dev/sde1 taft lvm2 a-- 15.00g 15.00g C
 /dev/sdf1 taft lvm2 a-- 15.00g 15.00g C
 /dev/sdg1 taft lvm2 a-- 15.00g 15.00g A
 /dev/sdh1 taft lvm2 a-- 15.00g 15.00g A

The following command creates a 10 gigabyte mirrored volume from the volume group taft.

lvcreate --type raid1 -m 1 -n mirror --nosync -L 10G taft
 WARNING: New raid1 won't be synchronised. Don't read what you didn't
write!
 Logical volume "mirror" created

The following command shows which devices are used for the mirror legs and RAID metadata
subvolumes.

lvs -a -o +devices
 LV VG Attr LSize Log Cpy%Sync Devices
 mirror taft Rwi-a-r--- 10.00g 100.00
mirror_rimage_0(0),mirror_rimage_1(0)
 [mirror_rimage_0] taft iwi-aor--- 10.00g /dev/sdb1(1)
 [mirror_rimage_1] taft iwi-aor--- 10.00g /dev/sdc1(1)
 [mirror_rmeta_0] taft ewi-aor--- 4.00m /dev/sdb1(0)
 [mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

The following command extends the size of the mirrored volume, using the cling allocation policy
to indicate that the mirror legs should be extended using physical volumes with the same tag.

Logical Volume Manager Administ rat ion

76

lvextend --alloc cling -L +10G taft/mirror
 Extending 2 mirror images.
 Extending logical volume mirror to 20.00 GiB
 Logical volume mirror successfully resized

The following display command shows that the mirror legs have been extended using physical
volumes with the same tag as the leg. Note that the physical volumes with a tag of C were ignored.

lvs -a -o +devices
 LV VG Attr LSize Log Cpy%Sync Devices
 mirror taft Rwi-a-r--- 20.00g 100.00
mirror_rimage_0(0),mirror_rimage_1(0)
 [mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdb1(1)
 [mirror_rimage_0] taft iwi-aor--- 20.00g /dev/sdg1(0)
 [mirror_rimage_1] taft iwi-aor--- 20.00g /dev/sdc1(1)
 [mirror_rimage_1] taft iwi-aor--- 20.00g /dev/sdd1(0)
 [mirror_rmeta_0] taft ewi-aor--- 4.00m /dev/sdb1(0)
 [mirror_rmeta_1] taft ewi-aor--- 4.00m /dev/sdc1(0)

4 .4 .17. Shrinking Logical Volumes

To reduce the size of a logical volume, first unmount the file system. You can then use the lvreduce
command to shrink the volume. After shrinking the volume, remount the file system.

Warning

It is important to reduce the size of the file system or whatever is residing in the volume before
shrinking the volume itself, otherwise you risk losing data.

Shrinking a logical volume frees some of the volume group to be allocated to other logical volumes
in the volume group.

The following example reduces the size of logical volume lvol1 in volume group vg00 by 3 logical
extents.

lvreduce -l -3 vg00/lvol1

4 .4 .18. Cont rolling Logical Volume Act ivat ion

You can flag a logical volume to be skipped during normal activation commands with the -k or --
setactivationskip {y|n} option of the lvcreate or lvchange command. This flag is not
applied during deactivation.

You can determine whether this flag is set for a logical volume with the lvs command, which
displays the k attribute as in the following example.

lvs vg/thin1s1
LV VG Attr LSize Pool Origin
thin1s1 vg Vwi---tz-k 1.00t pool0 thin1

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

77

By default, thin snapshot volumes are flagged for activation skip. You can activate a logical volume
with the k attribute set by using the -K or --ignoreactivationskip option in addition to the
standard -ay or --activate y option.

The following command activates a thin snapshot logical volume.

lvchange -ay -K VG/SnapLV

The persistent "activation skip" flag can be turned off when the logical volume is created by
specifying the -kn or --setactivationskip n option of the lvcreate command. You can turn
the flag off for an existing logical volume by specifying the -kn or --setactivationskip n option
of the lvchange command. You can turn the flag on again with the -ky or --setactivationskip
y option.

The following command creates a snapshot logical volume without the activation skip flag

lvcreate --type thin -n SnapLV -kn -s ThinLV --thinpool VG/ThinPoolLV

The following command removes the activation skip flag from a snapshot logical volume.

lvchange -kn VG/SnapLV

You can control the default activation skip setting with the auto_set_activation_skip setting in
the /etc/lvm/lvm.conf file.

4 .4 .19. T racking and Displaying Historical Logical Volumes (Red Hat
Enterprise Linux 7.3 and Later)

As of Red Hat Enterprise Linux 7.3, you can configure your system to track thin snapshot and thin
logical volumes that have been removed by enabling the record_lvs_history metadata option in
the lvm.conf configuration file. This allows you to display a full thin snapshot dependency chain
that includes logical volumes that have been removed from the original dependency chain and have
become historical logical volumes.

You can configure your system to retain historical volumes for a defined period of time by specifying
the retention time, in seconds, with the lvs_history_retention_time metadata option in the
lvm.conf configuration file.

A historical logical volume retains a simplified representation of the logical volume that has been
removed, including the following reporting fields for the volume:

lv_time_removed : the removal time of the logical volume

lv_time: the creation time of the logical volume

lv_name: the name of the logical volume

lv_uuid : the UUID of the logical volume

vg_name: the volume group that contains the logical volume.

When a volume is removed, the historical logical volume name acquires a hypen as a prefix. For
example, when you remove the logical volume lvol1, the name of the historical volume is -lvol1.
A historical logical volume cannot be reactivated.

Logical Volume Manager Administ rat ion

78

Even when the record_lvs_history metadata option enabled, you can prevent the retention of
historical logical volumes on an individual basis when you remove a logical volume by specifying
the --nohistory option of the lvremove command.

To include historical logical volumes in volume display, you specify the -H|--history option of an
LVM display command. You can display a full thin snapshot dependency chain that includes
historical volumes by specifying the lv_full_ancestors and lv_full_descendants reporting
fields along with the -H option.

The following series of commands provides examples of how you can display and manage historical
logical volumes.

1. Ensure that historical logical volumes are retained by setting record_lvs_history=1 in
the lvm.conf file. This metadata option is not enabled by default.

2. Run the following command to display a thin provisioned snapshot chain.

In this example:

lvol1 is an origin volume, the first volume in the chain.

lvol2 is a snapshot of lvol1.

lvol3 is a snapshot of lvol2.

lvol4 is a snapshot of lvol3.

lvol5 is also a snapshot of lvol3.

Note that even though the example lvs display command includes the -H option, no thin
snapshot volume has yet been removed and there are no historical logical volumes to
display.

lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,lvol3,lvol4,lvol5
 lvol2 lvol1 lvol3,lvol4,lvol5
 lvol3 lvol2,lvol1 lvol4,lvol5
 lvol4 lvol3,lvol2,lvol1
 lvol5 lvol3,lvol2,lvol1
 pool

3. Remove logical volume lvol3 from the snapshot chain, then run the following lvs
command again to see how historical logical volumes are displayed, along with their
ancestors and descendants.

lvremove -f vg/lvol3
 Logical volume "lvol3" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,-lvol3,lvol4,lvol5
 lvol2 lvol1 -lvol3,lvol4,lvol5
 -lvol3 lvol2,lvol1 lvol4,lvol5
 lvol4 -lvol3,lvol2,lvol1
 lvol5 -lvol3,lvol2,lvol1
 pool

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

79

4. You can use the lv_time_removed reporting field to display the time a historical volume
was removed.

lvs -H -o name,full_ancestors,full_descendants,time_removed
 LV FAncestors FDescendants RTime
 lvol1 lvol2,-lvol3,lvol4,lvol5
 lvol2 lvol1 -lvol3,lvol4,lvol5
 -lvol3 lvol2,lvol1 lvol4,lvol5 2016-03-14
14:14:32 +0100
 lvol4 -lvol3,lvol2,lvol1
 lvol5 -lvol3,lvol2,lvol1
 pool

5. You can reference historical logical volumes individually in a display command by specifying
the vgname/lvname format, as in the following example. Note that the fifth bit in the lv_attr
field is set to h to indicate the volume is a historical volume.

lvs -H vg/-lvol3
 LV VG Attr LSize
 -lvol3 vg ----h----- 0

6. LVM does not keep historical logical volumes if the volume has no live descendant. This
means that if you remove a logical volume at the end of a snapshot chain, the logical volume
is not retained as a historical logical volume.

lvremove -f vg/lvol5
 Automatically removing historical logical volume vg/-lvol5.
 Logical volume "lvol5" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 lvol1 lvol2,-lvol3,lvol4
 lvol2 lvol1 -lvol3,lvol4
 -lvol3 lvol2,lvol1 lvol4
 lvol4 -lvol3,lvol2,lvol1
 pool

7. Run the following commands to remove the volume lvol1 and lvol2 and to see how the
lvs command displays the volumes once they have been removed.

lvremove -f vg/lvol1 vg/lvol2
 Logical volume "lvol1" successfully removed
 Logical volume "lvol2" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 -lvol1 -lvol2,-lvol3,lvol4
 -lvol2 -lvol1 -lvol3,lvol4
 -lvol3 -lvol2,-lvol1 lvol4
 lvol4 -lvol3,-lvol2,-lvol1
 pool

8. To remove a historical logical volume completely, you can run the lvremove command
again, specifying the name of the historical volume that now includes the hyphen, as in the
following example.

Logical Volume Manager Administ rat ion

80

lvremove -f vg/-lvol3
Historical logical volume "lvol3" successfully removed
lvs -H -o name,full_ancestors,full_descendants
 LV FAncestors FDescendants
 -lvol1 -lvol2,lvol4
 -lvol2 -lvol1 lvol4
 lvol4 -lvol2,-lvol1
 pool

9. A historical logical volumes is retained as long as there is a chain that includes live volumes
in its descendants. This means that removing a historical logical volume also removes all of
the logical volumes in the chain if no existing descendant is linked to them, as shown in the
following example.

lvremove -f vg/lvol4
 Automatically removing historical logical volume vg/-lvol1.
 Automatically removing historical logical volume vg/-lvol2.
 Automatically removing historical logical volume vg/-lvol4.
 Logical volume "lvol4" successfully removed

4.5. Cont rolling LVM Device Scans with Filt ers

At startup, the vgscan command is run to scan the block devices on the system looking for LVM
labels, to determine which of them are physical volumes and to read the metadata and build up a list
of volume groups. The names of the physical volumes are stored in the LVM cache file of each node
in the system, /etc/lvm/cache/.cache. Subsequent commands may read that file to avoiding
rescanning.

You can control which devices LVM scans by setting up filters in the lvm.conf configuration file.
The filters in the lvm.conf file consist of a series of simple regular expressions that get applied to
the device names in the /dev directory to decide whether to accept or reject each block device found.

The following examples show the use of filters to control which devices LVM scans. Note that some of
these examples do not necessarily represent recommended practice, as the regular expressions are
matched freely against the complete pathname. For example, a/loop/ is equivalent to
a/.*loop.*/ and would match /dev/solooperation/lvol1.

The following filter adds all discovered devices, which is the default behavior as there is no filter
configured in the configuration file:

filter = ["a/.*/"]

The following filter removes the cdrom device in order to avoid delays if the drive contains no media:

filter = ["r|/dev/cdrom|"]

The following filter adds all loop and removes all other block devices:

filter = ["a/loop.*/", "r/.*/"]

The following filter adds all loop and IDE and removes all other block devices:

filter =["a|loop.*|", "a|/dev/hd.*|", "r|.*|"]

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

81

The following filter adds just partition 8 on the first IDE drive and removes all other block devices:

filter = ["a|^/dev/hda8$|", "r/.*/"]

Note

When the lvmetad daemon is running, the filter = setting in the /etc/lvm/lvm.conf
file does not apply when you execute the pvscan --cache device command. To filter
devices, you need to use the global_filter = setting. Devices that fail the global filter are
not opened by LVM and are never scanned. You may need to use a global filter, for example,
when you use LVM devices in VMs and you do not want the contents of the devices in the VMs
to be scanned by the physical host.

For more information on the lvm.conf file, see Appendix B, The LVM Configuration Files and the
lvm.conf(5) man page.

4.6. Online Data Relocat ion

You can move data while the system is in use with the pvmove command.

The pvmove command breaks up the data to be moved into sections and creates a temporary mirror
to move each section. For more information on the operation of the pvmove command, see the
pvmove(8) man page.

Note

In order to perform a pvmove operation in a cluster, you should ensure that the cmirror
package is installed and the cmirrord service is running.

The following command moves all allocated space off the physical volume /dev/sdc1 to other free
physical volumes in the volume group:

pvmove /dev/sdc1

The following command moves just the extents of the logical volume MyLV.

pvmove -n MyLV /dev/sdc1

Since the pvmove command can take a long time to execute, you may want to run the command in
the background to avoid display of progress updates in the foreground. The following command
moves all extents allocated to the physical volume /dev/sdc1 over to /dev/sdf1 in the
background.

pvmove -b /dev/sdc1 /dev/sdf1

The following command reports the progress of the pvmove command as a percentage at five
second intervals.

pvmove -i5 /dev/sdd1

Logical Volume Manager Administ rat ion

82

4.7. Act ivat ing Logical Volumes on Individual Nodes in a Cluster

If you have LVM installed in a cluster environment, you may at times need to activate logical volumes
exclusively on one node.

To activate logical volumes exclusively on one node, use the lvchange -aey command.
Alternatively, you can use lvchange -aly command to activate logical volumes only on the local
node but not exclusively. You can later activate them on additional nodes concurrently.

You can also activate logical volumes on individual nodes by using LVM tags, which are described
in Appendix D, LVM Object Tags. You can also specify activation of nodes in the configuration file,
which is described in Appendix B, The LVM Configuration Files.

4.8. Customized Report ing for LVM

LVM provides a wide range of configuration and command line options to produce customized
reports and to filter the report's output. For a full description of LVM reporting features and
capabilities, see the lvmreport(7) man page.

You can produce concise and customizable reports of LVM objects with the pvs, lvs, and vgs
commands. The reports that these commands generate include one line of output for each object.
Each line contains an ordered list of fields of properties related to the object. There are five ways to
select the objects to be reported: by physical volume, volume group, logical volume, physical volume
segment, and logical volume segment.

As of the Red Hat Enterprise Linux 7.3 release, you can report information about physical volumes,
volume groups, logical volumes, physical volume segments, and logical volume segments all at once
with the lvm fullreport command. For information on this command and its capabilities, see the
lvm-fullreport(8) man page.

As of the Red Hat Enterprise Linux 7.3 release, LVM supports log reports, which contain a log of
operations, messages, and per-object status with complete object identification collected during LVM
command execution. For an example of an LVM log report, see Section 4.8.6, “Command Log
Reporting (Red Hat Enterprise Linux 7.3 and later)” . For further information about the LVM log report.
see the lvmreport(7) man page.

The following sections provide summary information on the use of the pvs, lvs, and vgs commands
to customize a report:

Section 4.8.1, “Format Control” , which provides a summary of command arguments you can use
to control the format of the report.

Section 4.8.2, “Object Display Fields” , which provides a list of the fields you can display for each
LVM object.

Section 4.8.3, “Sorting LVM Reports” , which provides a summary of command arguments you can
use to sort the generated report.

Section 4.8.4, “Specifying Units” , which provides instructions for specifying the units of the report
output.

Section 4.8.5, “ JSON Format Output (Red Hat Enterprise Linux 7.3 and later)” , which provides an
example that specifies JSON format output (Red Hat Enterprise Linux 7.3 and later).

Section 4.8.6, “Command Log Reporting (Red Hat Enterprise Linux 7.3 and later)” , which provides
an example of a command log.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

83

4 .8.1. Format Cont rol

Whether you use the pvs, lvs, or vgs command determines the default set of fields displayed and
the sort order. You can control the output of these commands with the following arguments:

You can change what fields are displayed to something other than the default by using the -o
argument. For example, the following output is the default display for the pvs command (which
displays information about physical volumes).

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The following command displays only the physical volume name and size.

pvs -o pv_name,pv_size
 PV PSize
 /dev/sdb1 17.14G
 /dev/sdc1 17.14G
 /dev/sdd1 17.14G

You can append a field to the output with the plus sign (+), which is used in combination with the
-o argument.

The following example displays the UUID of the physical volume in addition to the default fields.

pvs -o +pv_uuid
 PV VG Fmt Attr PSize PFree PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-
6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G Joqlch-yWSj-kuEn-IdwM-01S9-
X08M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-
0dGW-UqkCS

Adding the -v argument to a command includes some extra fields. For example, the pvs -v
command will display the DevSize and PV UUID fields in addition to the default fields.

pvs -v
 Scanning for physical volume names
 PV VG Fmt Attr PSize PFree DevSize PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-
D9eB-M7iv-6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-
IdwM-01S9-XO8M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G 17.14G yvfvZK-Cf31-j75k-
dECm-0RZ3-0dGW-tUqkCS

The --noheadings argument suppresses the headings line. This can be useful for writing
scripts.

The following example uses the --noheadings argument in combination with the pv_name
argument, which will generate a list of all physical volumes.

Logical Volume Manager Administ rat ion

84

pvs --noheadings -o pv_name
 /dev/sdb1
 /dev/sdc1
 /dev/sdd1

The --separator separator argument uses separator to separate each field.

The following example separates the default output fields of the pvs command with an equals
sign (=).

pvs --separator =
 PV=VG=Fmt=Attr=PSize=PFree
 /dev/sdb1=new_vg=lvm2=a-=17.14G=17.14G
 /dev/sdc1=new_vg=lvm2=a-=17.14G=17.09G
 /dev/sdd1=new_vg=lvm2=a-=17.14G=17.14G

To keep the fields aligned when using the separator argument, use the separator argument in
conjunction with the --aligned argument.

pvs --separator = --aligned
 PV =VG =Fmt =Attr=PSize =PFree
 /dev/sdb1 =new_vg=lvm2=a- =17.14G=17.14G
 /dev/sdc1 =new_vg=lvm2=a- =17.14G=17.09G
 /dev/sdd1 =new_vg=lvm2=a- =17.14G=17.14G

You can use the -P argument of the lvs or vgs command to display information about a failed
volume that would otherwise not appear in the output. For information on the output this argument
yields, see Section 6.2, “Displaying Information on Failed Devices” .

For a full listing of display arguments, see the pvs(8), vgs(8) and lvs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment) fields
or with logical volume (and logical volume segment) fields, but physical volume and logical volume
fields cannot be mixed. For example, the following command will display one line of output for each
physical volume.

vgs -o +pv_name
 VG #PV #LV #SN Attr VSize VFree PV
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdc1
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdd1
 new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdb1

4 .8.2. Object Display Fields

This section provides a series of tables that list the information you can display about the LVM
objects with the pvs, vgs, and lvs commands.

For convenience, a field name prefix can be dropped if it matches the default for the command. For
example, with the pvs command, name means pv_name, but with the vgs command, name is
interpreted as vg_name.

Executing the following command is the equivalent of executing pvs -o pv_free.

pvs -o free
 PFree

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

85

 17.14G
 17.09G
 17.14G

Note

The number of characters in the attribute fields in pvs, vgs, and lvs output may increase in
later releases. The existing character fields will not change position, but new fields may be
added to the end. You should take this into account when writing scripts that search for
particular attribute characters, searching for the character based on its relative position to the
beginning of the field, but not for its relative position to the end of the field. For example, to
search for the character p in the ninth bit of the lv_attr field, you could search for the string
"^/........p/" , but you should not search for the string " /*p$/" .

T he pvs Co mmand

Table 4.3, “The pvs Command Display Fields” lists the display arguments of the pvs command,
along with the field name as it appears in the header display and a description of the field.

Table 4 .3. The pvs Command Display Fields

Argument Header Descript ion
dev_size DevSize The size of the underlying device on which the physical

volume was created
pe_start 1st PE Offset to the start of the first physical extent in the

underlying device
pv_attr Attr Status of the physical volume: (a)llocatable or

e(x)ported.
pv_fmt Fmt The metadata format of the physical volume (lvm2 or

lvm1)
pv_free PFree The free space remaining on the physical volume
pv_name PV The physical volume name
pv_pe_alloc_count Alloc Number of used physical extents
pv_pe_count PE Number of physical extents
pvseg_size SSize The segment size of the physical volume
pvseg_start Start The starting physical extent of the physical volume

segment
pv_size PSize The size of the physical volume
pv_tags PV Tags LVM tags attached to the physical volume
pv_used Used The amount of space currently used on the physical

volume
pv_uuid PV UUID The UUID of the physical volume

The pvs command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr,
pv_size, pv_free. The display is sorted by pv_name.

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.13G

Logical Volume Manager Administ rat ion

86

Using the -v argument with the pvs command adds the following fields to the default display:
dev_size, pv_uuid .

pvs -v
 Scanning for physical volume names
 PV VG Fmt Attr PSize PFree DevSize PV UUID
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-
M7iv-6XqA-dqGeXY
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-IdwM-
01S9-XO8M-mcpsVe
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.13G 17.14G yvfvZK-Cf31-j75k-dECm-
0RZ3-0dGW-tUqkCS

You can use the --segments argument of the pvs command to display information about each
physical volume segment. A segment is a group of extents. A segment view can be useful if you want
to see whether your logical volume is fragmented.

The pvs --segments command displays the following fields by default: pv_name, vg_name,
pv_fmt, pv_attr, pv_size, pv_free, pvseg_start, pvseg_size. The display is sorted by
pv_name and pvseg_size within the physical volume.

pvs --segments
 PV VG Fmt Attr PSize PFree Start SSize
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 0 1172
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1172 16
 /dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1188 1
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 0 26
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 26 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 50 26
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 76 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 100 26
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 126 24
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 150 22
 /dev/sda1 vg lvm2 a- 17.14G 16.75G 172 4217
 /dev/sdb1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdc1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdd1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sde1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdf1 vg lvm2 a- 17.14G 17.14G 0 4389
 /dev/sdg1 vg lvm2 a- 17.14G 17.14G 0 4389

You can use the pvs -a command to see devices detected by LVM that have not been initialized as
LVM physical volumes.

pvs -a
 PV VG Fmt Attr PSize PFree
 /dev/VolGroup00/LogVol01 -- 0 0
 /dev/new_vg/lvol0 -- 0 0
 /dev/ram -- 0 0
 /dev/ram0 -- 0 0
 /dev/ram2 -- 0 0
 /dev/ram3 -- 0 0
 /dev/ram4 -- 0 0
 /dev/ram5 -- 0 0

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

87

 /dev/ram6 -- 0 0
 /dev/root -- 0 0
 /dev/sda -- 0 0
 /dev/sdb -- 0 0
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc -- 0 0
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd -- 0 0
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

T he vgs Co mmand

Table 4.4, “ vgs Display Fields” lists the display arguments of the vgs command, along with the field
name as it appears in the header display and a description of the field.

Table 4 .4 . vgs Display Fields

Argument Header Descript ion
lv_count #LV The number of logical volumes the volume group

contains
max_lv MaxLV The maximum number of logical volumes allowed in the

volume group (0 if unlimited)
max_pv MaxPV The maximum number of physical volumes allowed in

the volume group (0 if unlimited)
pv_count #PV The number of physical volumes that define the volume

group
snap_count #SN The number of snapshots the volume group contains
vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly,

resi(z)eable, e(x)ported, (p)artial and (c)lustered.
vg_extent_count #Ext The number of physical extents in the volume group
vg_extent_size Ext The size of the physical extents in the volume group
vg_fmt Fmt The metadata format of the volume group (lvm2 or

lvm1)
vg_free VFree Size of the free space remaining in the volume group
vg_free_count Free Number of free physical extents in the volume group
vg_name VG The volume group name
vg_seqno Seq Number representing the revision of the volume group
vg_size VSize The size of the volume group
vg_sysid SYS ID LVM1 System ID
vg_tags VG Tags LVM tags attached to the volume group
vg_uuid VG UUID The UUID of the volume group

The vgs command displays the following fields by default: vg_name, pv_count, lv_count,
snap_count, vg_attr, vg_size, vg_free. The display is sorted by vg_name.

vgs
 VG #PV #LV #SN Attr VSize VFree
 new_vg 3 1 1 wz--n- 51.42G 51.36G

Using the -v argument with the vgs command adds the following fields to the default display:
vg_extent_size, vg_uuid .

Logical Volume Manager Administ rat ion

88

vgs -v
 Finding all volume groups
 Finding volume group "new_vg"
 VG Attr Ext #PV #LV #SN VSize VFree VG UUID
 new_vg wz--n- 4.00M 3 1 1 51.42G 51.36G jxQJ0a-ZKk0-OpMO-0118-
nlwO-wwqd-fD5D32

T he lvs Co mmand

Table 4.5, “ lvs Display Fields” lists the display arguments of the lvs command, along with the field
name as it appears in the header display and a description of the field.

Table 4 .5. lvs Display Fields

Argument Header Descript ion

chunksize

chunk_size

Chunk Unit size in a snapshot volume

copy_percent Copy% The synchronization percentage of a mirrored logical
volume; also used when physical extents are being
moved with the pv_move command

devices Devices The underlying devices that make up the logical
volume: the physical volumes, logical volumes, and
start physical extents and logical extents

lv_ancestors Ancestors (Red Hat Enterprise Linux 7.2 and later) For thin pool
snapshots, the ancestors of the logical volume

lv_descendants Descendant
s

(Red Hat Enterprise Linux 7.2 and later) For thin pool
snapshots, the descendants of the logical volume

lv_attr Attr The status of the logical volume. The logical volume
attribute bits are as follows:

Bit 1: Volume type: (m)irrored, (M)irrored without initial
sync, (o)rigin, (O)rigin with merging snapshot, (r)aid,
(R)aid without initial sync, (s)napshot, merging
(S)napshot, (p)vmove, (v)irtual, mirror or raid (i)mage,
mirror or raid (I)mage out-of-sync, mirror (l)og device,
under (c)onversion, thin (V)olume, (t)hin pool, (T)hin
pool data, raid or thin pool m(e)tadata or pool
metadata spare,

Bit 2: Permissions: (w)riteable, (r)ead-only, (R)ead-only
activation of non-read-only volume

Bit 3: Allocation policy: (a)nywhere, (c)ontiguous,
(i)nherited, c(l)ing, (n)ormal. This is capitalized if the
volume is currently locked against allocation changes,
for example while executing the pvmove command.

Bit 4: fixed (m)inor

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

89

Bit 5: State: (a)ctive, (s)uspended, (I)nvalid snapshot,
invalid (S)uspended snapshot, snapshot (m)erge
failed, suspended snapshot (M)erge failed, mapped
(d)evice present without tables, mapped device present
with (i)nactive table

Bit 6: device (o)pen

Bit 7: Target type: (m)irror, (r)aid, (s)napshot, (t)hin,
(u)nknown, (v)irtual. This groups logical volumes
related to the same kernel target together. So, for
example, mirror images, mirror logs as well as mirrors
themselves appear as (m) if they use the original
device-mapper mirror kernel driver, whereas the raid
equivalents using the md raid kernel driver all appear
as (r). Snapshots using the original device-mapper
driver appear as (s), whereas snapshots of thin
volumes using the thin provisioning driver appear as
(t).

Bit 8: Newly-allocated data blocks are overwritten with
blocks of (z)eroes before use.

Bit 9: Volume Health: (p)artial, (r)efresh needed,
(m)ismatches exist, (w)ritemostly. (p)artial signifies that
one or more of the Physical Volumes this Logical
Volume uses is missing from the system. (r)efresh
signifies that one or more of the Physical Volumes this
RAID Logical Volume uses had suffered a write error.
The write error could be due to a temporary failure of
that Physical Volume or an indication that it is failing.
The device should be refreshed or replaced.
(m)ismatches signifies that the RAID logical volume has
portions of the array that are not coherent.
Inconsistencies are discovered by initiating a check
operation on a RAID logical volume. (The scrubbing
operations, check and repair, can be performed on a
RAID Logical Volume by means of the lvchange
command.) (w)ritemostly signifies the devices in a RAID
1 logical volume that have been marked write-mostly.

Bit 10: s(k)ip activation: this volume is flagged to be
skipped during activation.lv_kernel_major KMaj Actual major device number of the logical volume (-1 if
inactive)

lv_kernel_minor KMIN Actual minor device number of the logical volume (-1 if
inactive)

lv_major Maj The persistent major device number of the logical
volume (-1 if not specified)

lv_minor Min The persistent minor device number of the logical
volume (-1 if not specified)

lv_name LV The name of the logical volume
lv_size LSize The size of the logical volume
lv_tags LV Tags LVM tags attached to the logical volume
lv_uuid LV UUID The UUID of the logical volume.
mirror_log Log Device on which the mirror log resides

Argument Header Descript ion

Logical Volume Manager Administ rat ion

90

modules Modules Corresponding kernel device-mapper target necessary
to use this logical volume

move_pv Move Source physical volume of a temporary logical volume
created with the pvmove command

origin Origin The origin device of a snapshot volume

regionsize

region_size

Region The unit size of a mirrored logical volume

seg_count #Seg The number of segments in the logical volume
seg_size SSize The size of the segments in the logical volume
seg_start Start Offset of the segment in the logical volume
seg_tags Seg Tags LVM tags attached to the segments of the logical

volume
segtype Type The segment type of a logical volume (for example:

mirror, striped, linear)
snap_percent Snap% Current percentage of a snapshot volume that is in use
stripes #Str Number of stripes or mirrors in a logical volume

stripesize

stripe_size

Stripe Unit size of the stripe in a striped logical volume

Argument Header Descript ion

The lvs command displays the following fields by default: lv_name, vg_name, lv_attr, lv_size,
origin, snap_percent, move_pv, mirror_log , copy_percent, convert_lv. The default
display is sorted by vg_name and lv_name within the volume group.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy% Convert
 lvol0 new_vg owi-a- 52.00M
 newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

Using the -v argument with the lvs command adds the following fields to the default display:
seg_count, lv_major, lv_minor, lv_kernel_major, lv_kernel_minor, lv_uuid .

lvs -v
 Finding all logical volumes
 LV VG #Seg Attr LSize Maj Min KMaj KMin Origin Snap%
Move Copy% Log Convert LV UUID
 lvol0 new_vg 1 owi-a- 52.00M -1 -1 253 3
LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
 newvgsnap1 new_vg 1 swi-a- 8.00M -1 -1 253 5 lvol0 0.20
1ye1OU-1cIu-o79k-20h2-ZGF0-qCJm-CfbsIx

You can use the --segments argument of the lvs command to display information with default
columns that emphasize the segment information. When you use the segments argument, the seg
prefix is optional. The lvs --segments command displays the following fields by default:
lv_name, vg_name, lv_attr, stripes, segtype, seg_size. The default display is sorted by
vg_name, lv_name within the volume group, and seg_start within the logical volume. If the logical
volumes were fragmented, the output from this command would show that.

lvs --segments
 LV VG Attr #Str Type SSize

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

91

 LogVol00 VolGroup00 -wi-ao 1 linear 36.62G
 LogVol01 VolGroup00 -wi-ao 1 linear 512.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 104.00M
 lv vg -wi-a- 1 linear 88.00M

Using the -v argument with the lvs --segments command adds the following fields to the default
display: seg_start, stripesize, chunksize.

lvs -v --segments
 Finding all logical volumes
 LV VG Attr Start SSize #Str Type Stripe Chunk
 lvol0 new_vg owi-a- 0 52.00M 1 linear 0 0
 newvgsnap1 new_vg swi-a- 0 8.00M 1 linear 0 8.00K

The following example shows the default output of the lvs command on a system with one logical
volume configured, followed by the default output of the lvs command with the segments argument
specified.

lvs
 LV VG Attr LSize Origin Snap% Move Log Copy%
 lvol0 new_vg -wi-a- 52.00M
lvs --segments
 LV VG Attr #Str Type SSize
 lvol0 new_vg -wi-a- 1 linear 52.00M

4 .8.3. Sort ing LVM Reports

Normally the entire output of the lvs, vgs, or pvs command has to be generated and stored
internally before it can be sorted and columns aligned correctly. You can specify the --unbuffered
argument to display unsorted output as soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the -O argument of any of the
reporting commands. It is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume
name, size, and free space.

pvs -o pv_name,pv_size,pv_free
 PV PSize PFree
 /dev/sdb1 17.14G 17.14G
 /dev/sdc1 17.14G 17.09G
 /dev/sdd1 17.14G 17.14G

The following example shows the same output, sorted by the free space field.

pvs -o pv_name,pv_size,pv_free -O pv_free
 PV PSize PFree
 /dev/sdc1 17.14G 17.09G
 /dev/sdd1 17.14G 17.14G
 /dev/sdb1 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

Logical Volume Manager Administ rat ion

92

pvs -o pv_name,pv_size -O pv_free
 PV PSize
 /dev/sdc1 17.14G
 /dev/sdd1 17.14G
 /dev/sdb1 17.14G

To display a reverse sort, precede a field you specify after the -O argument with the - character.

pvs -o pv_name,pv_size,pv_free -O -pv_free
 PV PSize PFree
 /dev/sdd1 17.14G 17.14G
 /dev/sdb1 17.14G 17.14G
 /dev/sdc1 17.14G 17.09G

4 .8.4 . Specifying Units

To specify the unit for the LVM report display, use the --units argument of the report command. You
can specify (b)ytes, (k)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes, (e)xabytes, (p)etabytes, and
(h)uman-readable. The default display is human-readable. You can override the default by setting
the units parameter in the global section of the lvm.conf file.

The following example specifies the output of the pvs command in megabytes rather than the default
gigabytes.

pvs --units m
 PV VG Fmt Attr PSize PFree
 /dev/sda1 lvm2 -- 17555.40M 17555.40M
 /dev/sdb1 new_vg lvm2 a- 17552.00M 17552.00M
 /dev/sdc1 new_vg lvm2 a- 17552.00M 17500.00M
 /dev/sdd1 new_vg lvm2 a- 17552.00M 17552.00M

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be
displayed in multiples of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
 /dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
 /dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The following command displays the output as a multiple of 1000.

pvs --units G
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 18.40G 18.40G
 /dev/sdc1 new_vg lvm2 a- 18.40G 18.35G
 /dev/sdd1 new_vg lvm2 a- 18.40G 18.40G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

The following example displays the output of the pvs command as a number of sectors.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

93

pvs --units s
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 35946496S 35946496S
 /dev/sdc1 new_vg lvm2 a- 35946496S 35840000S
 /dev/sdd1 new_vg lvm2 a- 35946496S 35946496S

The following example displays the output of the pvs command in units of 4 MB.

pvs --units 4m
 PV VG Fmt Attr PSize PFree
 /dev/sdb1 new_vg lvm2 a- 4388.00U 4388.00U
 /dev/sdc1 new_vg lvm2 a- 4388.00U 4375.00U
 /dev/sdd1 new_vg lvm2 a- 4388.00U 4388.00U

4 .8.5. JSON Format Output (Red Hat Enterprise Linux 7.3 and later)

As of Red Hat Enterprise Linux 7.3, you can use the --reportformat option of the LVM display
commands to display the output in JSON format.

The following example shows the output of the lvs in standard default format.

lvs
 LV VG Attr LSize Pool Origin Data% Meta%
Move Log Cpy%Sync Convert
 my_raid my_vg Rwi-a-r--- 12.00m
100.00
 root rhel_host-075 -wi-ao---- 6.67g
 swap rhel_host-075 -wi-ao---- 820.00m

The following command shows the output of the same LVM configuration when you specify JSON
format.

lvs --reportformat json
 {
 "report": [
 {
 "lv": [
 {"lv_name":"my_raid", "vg_name":"my_vg",
"lv_attr":"Rwi-a-r---", "lv_size":"12.00m", "pool_lv":"", "origin":"",
"data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent":"100.00", "convert_lv":""},
 {"lv_name":"root", "vg_name":"rhel_host-075",
"lv_attr":"-wi-ao----", "lv_size":"6.67g", "pool_lv":"", "origin":"",
"data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent":"", "convert_lv":""},
 {"lv_name":"swap", "vg_name":"rhel_host-075",
"lv_attr":"-wi-ao----", "lv_size":"820.00m", "pool_lv":"", "origin":"",
"data_percent":"", "metadata_percent":"", "move_pv":"", "mirror_log":"",
"copy_percent":"", "convert_lv":""}
]
 }
]
 }

Logical Volume Manager Administ rat ion

94

You can also set the report format as a configuration option in the /etc/lvm/lvm.conf file, using
the output_format setting. The --reportformat setting of the command line, however, takes
precedence over this setting.

4 .8.6. Command Log Report ing (Red Hat Enterprise Linux 7.3 and later)

As of Red Hat Enterprise Linux 7.3, both report-oriented and processing-oriented LVM commands can
report the command log if this is enabled with the log/report_command_log configuration
setting. You can determine the set of fields to display and to sort by for this report.

The following examples configures LVM to generate a complete log report for LVM commands. In this
example, you can see that both logical volumes lvol0 and lvol1 were successfully processed, as
was the volume group VG that contains the volumes.

lvmconfig --type full log/command_log_selection
command_log_selection="all"

lvs
 Logical Volume
 ==============
 LV LSize Cpy%Sync
 lvol1 4.00m 100.00
 lvol0 4.00m

 Command Log
 ===========
 Seq LogType Context ObjType ObjName ObjGrp Msg Errno RetCode
 1 status processing lv lvol0 vg success 0 1
 2 status processing lv lvol1 vg success 0 1
 3 status processing vg vg success 0 1

lvchange -an vg/lvol1
 Command Log
 ===========
 Seq LogType Context ObjType ObjName ObjGrp Msg Errno RetCode
 1 status processing lv lvol1 vg success 0 1
 2 status processing vg vg success 0 1

For further information on configuring LVM reports and command logs, see the lvmreport man
page.

Chapt er 4 . LVM Administ rat ion wit h CLI Commands

95

Chapter 5. LVM Configuration Examples

This chapter provides some basic LVM configuration examples.

5.1. Creat ing an LVM Logical Volume on Three Disks

This example procedure creates an LVM logical volume called new_logical_volume that consists
of the disks at /dev/sda1, /dev/sdb1, and /dev/sdc1.

1. To use disks in a volume group, label them as LVM physical volumes with the pvcreate
command.

Warning

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sdb1" successfully created
 Physical volume "/dev/sdc1" successfully created

2. Create the a volume group that consists of the LVM physical volumes you have created. The
following command creates the volume group new_vol_group.

vgcreate new_vol_group /dev/sda1 /dev/sdb1 /dev/sdc1
 Volume group "new_vol_group" successfully created

You can use the vgs command to display the attributes of the new volume group.

vgs
 VG #PV #LV #SN Attr VSize VFree
 new_vol_group 3 0 0 wz--n- 51.45G 51.45G

3. Create the logical volume from the volume group you have created. The following command
creates the logical volume new_logical_volume from the volume group
new_vol_group. This example creates a logical volume that uses 2 gigabytes of the volume
group.

lvcreate -L 2G -n new_logical_volume new_vol_group
 Logical volume "new_logical_volume" created

4. Create a file system on the logical volume. The following command creates a GFS2 file system
on the logical volume.

mkfs.gfs2 -p lock_nolock -j 1
/dev/new_vol_group/new_logical_volume
This will destroy any data on
/dev/new_vol_group/new_logical_volume.

Are you sure you want to proceed? [y/n] y

Logical Volume Manager Administ rat ion

96

Device: /dev/new_vol_group/new_logical_volume
Blocksize: 4096
Filesystem Size: 491460
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space
usage.

mount /dev/new_vol_group/new_logical_volume /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/new_vol_group/new_logical_volume
 1965840 20 1965820 1% /mnt

5.2. Creat ing a St riped Logical Volume

This example procedure creates an LVM striped logical volume called striped_logical_volume
that stripes data across the disks at /dev/sda1, /dev/sdb1, and /dev/sdc1.

1. Label the disks you will use in the volume group as LVM physical volumes with the pvcreate
command.

Warning

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sdb1" successfully created
 Physical volume "/dev/sdc1" successfully created

2. Create the volume group volgroup01. The following command creates the volume group
volgroup01.

vgcreate volgroup01 /dev/sda1 /dev/sdb1 /dev/sdc1
 Volume group "volgroup01" successfully created

You can use the vgs command to display the attributes of the new volume group.

vgs
 VG #PV #LV #SN Attr VSize VFree
 volgroup01 3 0 0 wz--n- 51.45G 51.45G

Chapt er 5. LVM Configurat ion Examples

97

3. Create a striped logical volume from the volume group you have created. The following
command creates the striped logical volume striped_logical_volume from the volume
group volgroup01. This example creates a logical volume that is 2 gigabytes in size, with
three stripes and a stripe size of 4 kilobytes.

lvcreate -i 3 -I 4 -L 2 G -n striped_logical_volume volgroup01
 Rounding size (512 extents) up to stripe boundary size (513
extents)
 Logical volume "striped_logical_volume" created

4. Create a file system on the striped logical volume. The following command creates a GFS2 file
system on the logical volume.

mkfs.gfs2 -p lock_nolock -j 1
/dev/volgroup01/striped_logical_volume
This will destroy any data on
/dev/volgroup01/striped_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/volgroup01/striped_logical_volume
Blocksize: 4096
Filesystem Size: 492484
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space
usage.

mount /dev/volgroup01/striped_logical_volume /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00
 13902624 1656776 11528232 13% /
/dev/hda1 101086 10787 85080 12% /boot
tmpfs 127880 0 127880 0% /dev/shm
/dev/volgroup01/striped_logical_volume
 1969936 20 1969916 1% /mnt

5.3. Split t ing a Volume Group

In this example procedure, an existing volume group consists of three physical volumes. If there is
enough unused space on the physical volumes, a new volume group can be created without adding
new disks.

In the initial set up, the logical volume mylv is carved from the volume group myvol , which in turn
consists of the three physical volumes, /dev/sda1, /dev/sdb1, and /dev/sdc1.

Logical Volume Manager Administ rat ion

98

After completing this procedure, the volume group myvg will consist of /dev/sda1 and /dev/sdb1.
A second volume group, yourvg , will consist of /dev/sdc1.

1. Use the pvscan command to determine how much free space is currently available in the
volume group.

pvscan
 PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
 PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 12.15 GB free]
 PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 15.80 GB free]
 Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

2. Move all the used physical extents in /dev/sdc1 to /dev/sdb1 with the pvmove command.
The pvmove command can take a long time to execute.

pvmove /dev/sdc1 /dev/sdb1
 /dev/sdc1: Moved: 14.7%
 /dev/sdc1: Moved: 30.3%
 /dev/sdc1: Moved: 45.7%
 /dev/sdc1: Moved: 61.0%
 /dev/sdc1: Moved: 76.6%
 /dev/sdc1: Moved: 92.2%
 /dev/sdc1: Moved: 100.0%

After moving the data, you can see that all of the space on /dev/sdc1 is free.

pvscan
 PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
 PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 10.80 GB free]
 PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 17.15 GB free]
 Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

3. To create the new volume group yourvg , use the vgsplit command to split the volume
group myvg .

Before you can split the volume group, the logical volume must be inactive. If the file system is
mounted, you must unmount the file system before deactivating the logical volume.

Deactivate the logical volumes with the lvchange command or the vgchange command.
The following command deactivates the logical volume mylv and then splits the volume
group yourvg from the volume group myvg , moving the physical volume /dev/sdc1 into
the new volume group yourvg .

lvchange -a n /dev/myvg/mylv
vgsplit myvg yourvg /dev/sdc1
 Volume group "yourvg" successfully split from "myvg"

You can use the vgs command to see the attributes of the two volume groups.

vgs
 VG #PV #LV #SN Attr VSize VFree
 myvg 2 1 0 wz--n- 34.30G 10.80G
 yourvg 1 0 0 wz--n- 17.15G 17.15G

4. After creating the new volume group, create the new logical volume yourlv.

Chapt er 5. LVM Configurat ion Examples

99

lvcreate -L 5 G -n yourlv yourvg
 Logical volume "yourlv" created

5. Create a file system on the new logical volume and mount it.

mkfs.gfs2 -p lock_nolock -j 1 /dev/yourvg/yourlv
This will destroy any data on /dev/yourvg/yourlv.

Are you sure you want to proceed? [y/n] y

Device: /dev/yourvg/yourlv
Blocksize: 4096
Filesystem Size: 1277816
Journals: 1
Resource Groups: 20
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

mount /dev/yourvg/yourlv /mnt

6. Since you had to deactivate the logical volume mylv, you need to activate it again before
you can mount it.

lvchange -a y /dev/myvg/mylv

mount /dev/myvg/mylv /mnt
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/yourvg/yourlv 24507776 32 24507744 1% /mnt
/dev/myvg/mylv 24507776 32 24507744 1% /mnt

5.4 . Removing a Disk from a Logical Volume

These example procedures show how you can remove a disk from an existing logical volume, either
to replace the disk or to use the disk as part of a different volume. In order to remove a disk, you must
first move the extents on the LVM physical volume to a different disk or set of disks.

5.4 .1. Moving Extents to Exist ing Physical Volumes

In this example, the logical volume is distributed across four physical volumes in the volume group
myvg .

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

This examples moves the extents off of /dev/sdb1 so that it can be removed from the volume group.

Logical Volume Manager Administ rat ion

100

1. If there are enough free extents on the other physical volumes in the volume group, you can
execute the pvmove command on the device you want to remove with no other options and
the extents will be distributed to the other devices.

pvmove /dev/sdb1
 /dev/sdb1: Moved: 2.0%
 ...
 /dev/sdb1: Moved: 79.2%
 ...
 /dev/sdb1: Moved: 100.0%

After the pvmove command has finished executing, the distribution of extents is as follows:

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

2. Use the vgreduce command to remove the physical volume /dev/sdb1 from the volume
group.

vgreduce myvg /dev/sdb1
 Removed "/dev/sdb1" from volume group "myvg"
pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G
 /dev/sdb1 lvm2 -- 17.15G 17.15G
 /dev/sdc1 myvg lvm2 a- 17.15G 12.15G
 /dev/sdd1 myvg lvm2 a- 17.15G 2.15G

The disk can now be physically removed or allocated to other users.

5.4 .2. Moving Extents to a New Disk

In this example, the logical volume is distributed across three physical volumes in the volume group
myvg as follows:

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G

This example procedure moves the extents of /dev/sdb1 to a new device, /dev/sdd1.

1. Create a new physical volume from /dev/sdd1.

pvcreate /dev/sdd1
 Physical volume "/dev/sdd1" successfully created

2. Add the new physical volume /dev/sdd1 to the existing volume group myvg .

Chapt er 5. LVM Configurat ion Examples

101

vgextend myvg /dev/sdd1
 Volume group "myvg" successfully extended
pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 17.15G 0

3. Use the pvmove command to move the data from /dev/sdb1 to /dev/sdd1.

pvmove /dev/sdb1 /dev/sdd1
 /dev/sdb1: Moved: 10.0%
...
 /dev/sdb1: Moved: 79.7%
...
 /dev/sdb1: Moved: 100.0%

pvs -o+pv_used
 PV VG Fmt Attr PSize PFree Used
 /dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
 /dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
 /dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
 /dev/sdd1 myvg lvm2 a- 17.15G 15.15G 2.00G

4. After you have moved the data off /dev/sdb1, you can remove it from the volume group.

vgreduce myvg /dev/sdb1
 Removed "/dev/sdb1" from volume group "myvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

5.5. Creat ing a Mirrored LVM Logical Volume in a Cluster

Creating a mirrored LVM logical volume in a cluster requires the same commands and procedures as
creating a mirrored LVM logical volume on a single node with a segment type of mirror. However, in
order to create a mirrored LVM volume in a cluster:

The cluster and cluster mirror infrastructure must be running

The cluster must be quorate

The locking type in the lvm.conf file must be set correctly to enable cluster locking, either
directly or by means of the lvmconf command as described in Section 3.1, “Creating LVM
Volumes in a Cluster”

In Red Hat Enterprise Linux 7, clusters are managed through Pacemaker. Clustered LVM logical
volumes are supported only in conjunction with Pacemaker clusters, and must be configured as
cluster resources.

The following procedure creates a mirrored LVM volume in a cluster.

1. Install the cluster software and LVM packages, start the cluster software, and create the
cluster. You must configure fencing for the cluster. The document High Availability Add-On
Administration provides a sample procedure for creating a cluster and configuring fencing for

Logical Volume Manager Administ rat ion

102

the nodes in the cluster. The document High Availability Add-On Reference provides more
detailed information about the components of cluster configuration.

2. In order to create a mirrored logical volume that is shared by all of the nodes in a cluster, the
locking type must be set correctly in the lvm.conf file in every node of the cluster. By
default, the locking type is set to local. To change this, execute the following command in
each node of the cluster to enable clustered locking:

/sbin/lvmconf --enable-cluster

3. Set up a dlm resource for the cluster. You create the resource as a cloned resource so that it
will run on every node in the cluster.

pcs resource create dlm ocf:pacemaker:controld op monitor
interval=30s on-fail=fence clone interleave=true ordered=true

4. Configure clvmd as a cluster resource. Just as for the dlm resource, you create the resource
as a cloned resource so that it will run on every node in the cluster. Note that you must set the
with_cmirrord=true parameter to enable the cmirrord daemon on all of the nodes that
clvmd runs on.

pcs resource create clvmd pcf:heartbeat:clvm with_cmirrord=true
op monitor interval=30s on-fail=fence clone interleave=true
ordered=true

If you have already configured a clvmd resource but did not specify the
with_cmirrord=true parameter, you can update the resource to include the parameter
with the following command.

pcs resource update clvmd with_cmirrord=true

5. Set up clvmd and dlm dependency and start up order. clvmd must start after dlm and must
run on the same node as dlm.

pcs constraint order start dlm-clone then clvmd-clone
pcs constraint colocation add clvmd-clone with dlm-clone

6. Create the mirror. The first step is creating the physical volumes. The following commands
create three physical volumes. Two of the physical volumes will be used for the legs of the
mirror, and the third physical volume will contain the mirror log.

pvcreate /dev/sdb1
 Physical volume "/dev/sdb1" successfully created
pvcreate /dev/sdc1
 Physical volume "/dev/sdc1" successfully created
pvcreate /dev/sdd1
 Physical volume "/dev/sdd1" successfully created

7. Create the volume group. This example creates a volume group vg001 that consists of the
three physical volumes that were created in the previous step.

vgcreate vg001 /dev/sdb1 /dev/sdc1 /dev/sdd1
 Clustered volume group "vg001" successfully created

Chapt er 5. LVM Configurat ion Examples

103

Note that the output of the vgcreate command indicates that the volume group is clustered.
You can verify that a volume group is clustered with the vgs command, which will show the
volume group's attributes. If a volume group is clustered, it will show a c attribute.

vgs vg001
 VG #PV #LV #SN Attr VSize VFree
 vg001 3 0 0 wz--nc 68.97G 68.97G

8. Create the mirrored logical volume. This example creates the logical volume mirrorlv from
the volume group vg001. This volume has one mirror leg. This example specifies which
extents of the physical volume will be used for the logical volume.

lvcreate --type mirror -l 1000 -m 1 vg001 -n mirrorlv
/dev/sdb1:1-1000 /dev/sdc1:1-1000 /dev/sdd1:0
 Logical volume "mirrorlv" created

You can use the lvs command to display the progress of the mirror creation. The following
example shows that the mirror is 47% synced, then 91% synced, then 100% synced when the
mirror is complete.

lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
47.00
lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
91.00
lvs vg001/mirrorlv
 LV VG Attr LSize Origin Snap% Move Log
Copy% Convert
 mirrorlv vg001 mwi-a- 3.91G vg001_mlog
100.00

The completion of the mirror is noted in the system log:

May 10 14:52:52 doc-07 [19402]: Monitoring mirror device vg001-
mirrorlv for events
May 10 14:55:00 doc-07 lvm[19402]: vg001-mirrorlv is now in-sync

9. You can use the lvs command with the -o +devices options to display the configuration
of the mirror, including which devices make up the mirror legs. You can see that the logical
volume in this example is composed of two linear images and one log.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move
Log Copy% Convert Devices
 mirrorlv vg001 mwi-a- 3.91G
mirrorlv_mlog 100.00
mirrorlv_mimage_0(0),mirrorlv_mimage_1(0)
 [mirrorlv_mimage_0] vg001 iwi-ao 3.91G
/dev/sdb1(1)

Logical Volume Manager Administ rat ion

104

 [mirrorlv_mimage_1] vg001 iwi-ao 3.91G
/dev/sdc1(1)
 [mirrorlv_mlog] vg001 lwi-ao 4.00M
/dev/sdd1(0)

You can use the seg_pe_ranges option of the lvs to display the data layout. You can use
this option to verify that your layout is properly redundant. The output of this command
displays PE ranges in the same format that the lvcreate and lvresize commands take as
input.

lvs -a -o +seg_pe_ranges --segments
 PE Ranges
 mirrorlv_mimage_0:0-999 mirrorlv_mimage_1:0-999
 /dev/sdb1:1-1000
 /dev/sdc1:1-1000
 /dev/sdd1:0-0

Note

For information on recovering from the failure of one of the legs of an LVM mirrored volume,
see Section 6.3, “Recovering from LVM Mirror Failure” .

Chapt er 5. LVM Configurat ion Examples

105

Chapter 6. LVM Troubleshooting

This chapter provides instructions for troubleshooting a variety of LVM issues.

6.1. Troubleshoot ing Diagnost ics

If a command is not working as expected, you can gather diagnostics in the following ways:

Use the -v, -vv, -vvv, or -vvvv argument of any command for increasingly verbose levels of
output.

If the problem is related to the logical volume activation, set activation = 1 in the log section
of the configuration file and run the command with the -vvvv argument. After you have finished
examining this output be sure to reset this parameter to 0, to avoid possible problems with the
machine locking during low memory situations.

Run the lvmdump command, which provides an information dump for diagnostic purposes. For
information, see the lvmdump(8) man page.

Execute the lvs -v, pvs -a, or dmsetup info -c command for additional system
information.

Examine the last backup of the metadata in the /etc/lvm/backup file and archived versions in
the /etc/lvm/archive file.

Check the current configuration information by running the lvmconfig command.

Check the .cache file in the /etc/lvm directory for a record of which devices have physical
volumes on them.

6.2. Displaying Informat ion on Failed Devices

You can use the -P argument of the lvs or vgs command to display information about a failed
volume that would otherwise not appear in the output. This argument permits some operations even
though the metadata is not completely consistent internally. For example, if one of the devices that
made up the volume group vg failed, the vgs command might show the following output.

vgs -o +devices
 Volume group "vg" not found

If you specify the -P argument of the vgs command, the volume group is still unusable but you can
see more information about the failed device.

vgs -P -o +devices
 Partial mode. Incomplete volume groups will be activated read-only.
 VG #PV #LV #SN Attr VSize VFree Devices
 vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(0)
 vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(5120),/dev/sda1(0)

In this example, the failed device caused both a linear and a striped logical volume in the volume
group to fail. The lvs command without the -P argument shows the following output.

lvs -a -o +devices
 Volume group "vg" not found

Logical Volume Manager Administ rat ion

106

Using the -P argument shows the logical volumes that have failed.

lvs -P -a -o +devices
 Partial mode. Incomplete volume groups will be activated read-only.
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 linear vg -wi-a- 20.00G unknown
device(0)
 stripe vg -wi-a- 20.00G unknown
device(5120),/dev/sda1(0)

The following examples show the output of the pvs and lvs commands with the -P argument
specified when a leg of a mirrored logical volume has failed.

vgs -a -o +devices -P
 Partial mode. Incomplete volume groups will be activated read-only.
 VG #PV #LV #SN Attr VSize VFree Devices
 corey 4 4 0 rz-pnc 1.58T 1.34T
my_mirror_mimage_0(0),my_mirror_mimage_1(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdd1(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T unknown device(0)
 corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdb1(0)

lvs -a -o +devices -P
 Partial mode. Incomplete volume groups will be activated read-only.
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 my_mirror corey mwi-a- 120.00G
my_mirror_mlog 1.95 my_mirror_mimage_0(0),my_mirror_mimage_1(0)
 [my_mirror_mimage_0] corey iwi-ao 120.00G
unknown device(0)
 [my_mirror_mimage_1] corey iwi-ao 120.00G
/dev/sdb1(0)
 [my_mirror_mlog] corey lwi-ao 4.00M
/dev/sdd1(0)

6.3. Recovering from LVM Mirror Failure

This section provides an example of recovering from a situation where one leg of an LVM mirrored
volume fails because the underlying device for a physical volume goes down and the
mirror_log_fault_policy parameter is set to remove. This requires that you manually rebuild
the mirror. For information on setting the mirror_log_fault_policy parameter, refer to
Section 4.4.4.1, “Mirrored Logical Volume Failure Policy” .

When a mirror leg fails, LVM converts the mirrored volume into a linear volume, which continues to
operate as before but without the mirrored redundancy. At that point, you can add a new disk device
to the system to use as a replacement physical device and rebuild the mirror.

The following command creates the physical volumes which will be used for the mirror.

pvcreate /dev/sd[abcdefgh][12]
 Physical volume "/dev/sda1" successfully created
 Physical volume "/dev/sda2" successfully created
 Physical volume "/dev/sdb1" successfully created

Chapt er 6 . LVM T roubleshoot ing

107

 Physical volume "/dev/sdb2" successfully created
 Physical volume "/dev/sdc1" successfully created
 Physical volume "/dev/sdc2" successfully created
 Physical volume "/dev/sdd1" successfully created
 Physical volume "/dev/sdd2" successfully created
 Physical volume "/dev/sde1" successfully created
 Physical volume "/dev/sde2" successfully created
 Physical volume "/dev/sdf1" successfully created
 Physical volume "/dev/sdf2" successfully created
 Physical volume "/dev/sdg1" successfully created
 Physical volume "/dev/sdg2" successfully created
 Physical volume "/dev/sdh1" successfully created
 Physical volume "/dev/sdh2" successfully created

The following commands creates the volume group vg and the mirrored volume groupfs.

vgcreate vg /dev/sd[abcdefgh][12]
 Volume group "vg" successfully created
lvcreate -L 750M -n groupfs -m 1 vg /dev/sda1 /dev/sdb1 /dev/sdc1
 Rounding up size to full physical extent 752.00 MB
 Logical volume "groupfs" created

You can use the lvs command to verify the layout of the mirrored volume and the underlying devices
for the mirror leg and the mirror log. Note that in the first example the mirror is not yet completely
synced; you should wait until the Copy% field displays 100.00 before continuing.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
21.28 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sda1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mlog] vg lwi-ao 4.00M
/dev/sdc1(0)

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
100.00 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sda1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mlog] vg lwi-ao 4.00M i
/dev/sdc1(0)

In this example, the primary leg of the mirror /dev/sda1 fails. Any write activity to the mirrored
volume causes LVM to detect the failed mirror. When this occurs, LVM converts the mirror into a single
linear volume. In this case, to trigger the conversion, we execute a dd command

Logical Volume Manager Administ rat ion

108

dd if=/dev/zero of=/dev/vg/groupfs count=10
10+0 records in
10+0 records out

You can use the lvs command to verify that the device is now a linear device. Because of the failed
disk, I/O errors occur.

lvs -a -o +devices
 /dev/sda1: read failed after 0 of 2048 at 0: Input/output error
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 groupfs vg -wi-a- 752.00M /dev/sdb1(0)

At this point you should still be able to use the logical volume, but there will be no mirror redundancy.

To rebuild the mirrored volume, you replace the broken drive and recreate the physical volume. If you
use the same disk rather than replacing it with a new one, you will see " inconsistent" warnings when
you run the pvcreate command. You can prevent that warning from appearing by executing the
vgreduce --removemissing command.

pvcreate /dev/sdi[12]
 Physical volume "/dev/sdi1" successfully created
 Physical volume "/dev/sdi2" successfully created

pvscan
 PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
 PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdi1 lvm2 [603.94 GB]
 PV /dev/sdi2 lvm2 [603.94 GB]
 Total: 16 [2.11 TB] / in use: 14 [949.65 GB] / in no VG: 2 [1.18 TB]

Next you extend the original volume group with the new physical volume.

vgextend vg /dev/sdi[12]
 Volume group "vg" successfully extended

pvscan
 PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
 PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]

Chapt er 6 . LVM T roubleshoot ing

109

 PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
 PV /dev/sdi1 VG vg lvm2 [603.93 GB / 603.93 GB free]
 PV /dev/sdi2 VG vg lvm2 [603.93 GB / 603.93 GB free]
 Total: 16 [2.11 TB] / in use: 16 [2.11 TB] / in no VG: 0 [0]

Convert the linear volume back to its original mirrored state.

lvconvert -m 1 /dev/vg/groupfs /dev/sdi1 /dev/sdb1 /dev/sdc1
 Logical volume mirror converted.

You can use the lvs command to verify that the mirror is restored.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log
Copy% Devices
 groupfs vg mwi-a- 752.00M groupfs_mlog
68.62 groupfs_mimage_0(0),groupfs_mimage_1(0)
 [groupfs_mimage_0] vg iwi-ao 752.00M
/dev/sdb1(0)
 [groupfs_mimage_1] vg iwi-ao 752.00M
/dev/sdi1(0)
 [groupfs_mlog] vg lwi-ao 4.00M
/dev/sdc1(0)

6.4 . Recovering Physical Volume Metadata

If the volume group metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you will get an error message indicating that the metadata area is incorrect, or that the
system was unable to find a physical volume with a particular UUID. You may be able to recover the
data from the physical volume by writing a new metadata area on the physical volume specifying the
same UUID as the lost metadata.

Warning

You should not attempt this procedure with a working LVM logical volume. You will lose your
data if you specify the incorrect UUID.

The following example shows the sort of output you may see if the metadata area is missing or
corrupted.

lvs -a -o +devices
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-
NYM5Sk'.
 Couldn't find all physical volumes for volume group VG.

Logical Volume Manager Administ rat ion

110

 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-
NYM5Sk'.
 Couldn't find all physical volumes for volume group VG.
 ...

You may be able to find the UUID for the physical volume that was overwritten by looking in the
/etc/lvm/archive directory. Look in the file VolumeGroupName_xxxx.vg for the last known
valid archived LVM metadata for that volume group.

Alternately, you may find that deactivating the volume and setting the partial (-P) argument will
enable you to find the UUID of the missing corrupted physical volume.

vgchange -an --partial
 Partial mode. Incomplete volume groups will be activated read-only.
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-
NYM5Sk'.
 Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-
NYM5Sk'.
 ...

Use the --uuid and --restorefile arguments of the pvcreate command to restore the physical
volume. The following example labels the /dev/sdh1 device as a physical volume with the UUID
indicated above, FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk. This command restores the
physical volume label with the metadata information contained in VG_00050.vg , the most recent
good archived metadata for the volume group. The restorefile argument instructs the pvcreate
command to make the new physical volume compatible with the old one on the volume group,
ensuring that the new metadata will not be placed where the old physical volume contained data
(which could happen, for example, if the original pvcreate command had used the command line
arguments that control metadata placement, or if the physical volume was originally created using a
different version of the software that used different defaults). The pvcreate command overwrites only
the LVM metadata areas and does not affect the existing data areas.

pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" --
restorefile /etc/lvm/archive/VG_00050.vg /dev/sdh1
 Physical volume "/dev/sdh1" successfully created

You can then use the vgcfgrestore command to restore the volume group's metadata.

vgcfgrestore VG
 Restored volume group VG

You can now display the logical volumes.

lvs -a -o +devices
 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe VG -wi--- 300.00G /dev/sdh1
(0),/dev/sda1(0)
 stripe VG -wi--- 300.00G /dev/sdh1
(34728),/dev/sdb1(0)

The following commands activate the volumes and display the active volumes.

lvchange -ay /dev/VG/stripe
lvs -a -o +devices

Chapt er 6 . LVM T roubleshoot ing

111

 LV VG Attr LSize Origin Snap% Move Log Copy% Devices
 stripe VG -wi-a- 300.00G /dev/sdh1
(0),/dev/sda1(0)
 stripe VG -wi-a- 300.00G /dev/sdh1
(34728),/dev/sdb1(0)

If the on-disk LVM metadata takes as least as much space as what overrode it, this command can
recover the physical volume. If what overrode the metadata went past the metadata area, the data on
the volume may have been affected. You might be able to use the fsck command to recover that
data.

6.5. Replacing a Missing Physical Volume

If a physical volume fails or otherwise needs to be replaced, you can label a new physical volume to
replace the one that has been lost in the existing volume group by following the same procedure as
you would for recovering physical volume metadata, described in Section 6.4, “Recovering Physical
Volume Metadata” . You can use the --partial and --verbose arguments of the vgdisplay
command to display the UUIDs and sizes of any physical volumes that are no longer present. If you
wish to substitute another physical volume of the same size, you can use the pvcreate command
with the --restorefile and --uuid arguments to initialize a new device with the same UUID as
the missing physical volume. You can then use the vgcfgrestore command to restore the volume
group's metadata.

6.6. Removing Lost Physical Volumes from a Volume Group

If you lose a physical volume, you can activate the remaining physical volumes in the volume group
with the --partial argument of the vgchange command. You can remove all the logical volumes
that used that physical volume from the volume group with the --removemissing argument of the
vgreduce command.

You should run the vgreduce command with the --test argument to verify what you will be
destroying.

Like most LVM operations, the vgreduce command is reversible if you immediately use the
vgcfgrestore command to restore the volume group metadata to its previous state. For example, if
you used the --removemissing argument of the vgreduce command without the --test
argument and find you have removed logical volumes you wanted to keep, you can still replace the
physical volume and use another vgcfgrestore command to return the volume group to its
previous state.

6.7. Insufficient Free Extents for a Logical Volume

You may get the error message " Insufficient free extents" when creating a logical volume when you
think you have enough extents based on the output of the vgdisplay or vgs commands. This is
because these commands round figures to 2 decimal places to provide human-readable output. To
specify exact size, use free physical extent count instead of a multiple of bytes to determine the size of
the logical volume.

The vgdisplay command, by default, includes this line of output that indicates the free physical
extents.

Logical Volume Manager Administ rat ion

112

vgdisplay
 --- Volume group ---
 ...
 Free PE / Size 8780 / 34.30 GB

Alternately, you can use the vg_free_count and vg_extent_count arguments of the vgs
command to display the free extents and the total number of extents.

vgs -o +vg_free_count,vg_extent_count
 VG #PV #LV #SN Attr VSize VFree Free #Ext
 testvg 2 0 0 wz--n- 34.30G 34.30G 8780 8780

With 8780 free physical extents, you can enter the following command, using the lower-case l
argument to use extents instead of bytes:

lvcreate -l 8780 -n testlv testvg

This uses all the free extents in the volume group.

vgs -o +vg_free_count,vg_extent_count
 VG #PV #LV #SN Attr VSize VFree Free #Ext
 testvg 2 1 0 wz--n- 34.30G 0 0 8780

Alternately, you can extend the logical volume to use a percentage of the remaining free space in the
volume group by using the -l argument of the lvcreate command. For information, see
Section 4.4.1, “Creating Linear Logical Volumes” .

6.8. Duplicate PV Warnings for Mult ipathed Devices

When using LVM with multipathed storage, some LVM commands (such as vgs or lvchange) may
display messages such as the following when listing a volume group or logical volume.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/dm-5 not
/dev/sdd
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/emcpowerb
not /dev/sde
Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using /dev/sddlmab
not /dev/sdf

After providing information on the root cause for these warnings, this section describes how to
address this issue in the following two cases.

The two devices displayed in the output are both single paths to the same device

The two devices displayed in the output are both multipath maps

6.8.1. Root Cause of Duplicate PV Warning

With a default configuration, LVM commands will scan for devices in /dev and check every resulting
device for LVM metadata. This is caused by the default filter in the /etc/lvm/lvm.conf, which is
as follows:

filter = ["a/.*/"]

Chapt er 6 . LVM T roubleshoot ing

113

When using Device Mapper Multipath or other multipath software such as EMC PowerPath or Hitachi
Dynamic Link Manager (HDLM), each path to a particular logical unit number (LUN) is registered as
a different SCSI device, such as /dev/sdb or /dev/sdc. The multipath software will then create a
new device that maps to those individual paths, such as /dev/mapper/mpath1 or
/dev/mapper/mpatha for Device Mapper Multipath, /dev/emcpowera for EMC PowerPath, or
/dev/sddlmab for Hitachi HDLM. Since each LUN has multiple device nodes in /dev that point to
the same underlying data, they all contain the same LVM metadata and thus LVM commands will find
the same metadata multiple times and report them as duplicates.

These duplicate messages are only warnings and do not mean the LVM operation has failed. Rather,
they are alerting the user that only one of the devices has been used as a physical volume and the
others are being ignored. If the messages indicate the incorrect device is being chosen or if the
warnings are disruptive to users, then a filter can be applied to search only the necessary devices for
physical volumes, and to leave out any underlying paths to multipath devices.

6.8.2. Duplicate Warnings for Single Paths

The following example shows a duplicate PV warning in which the duplicate devices displayed are
both single paths to the same device. In this case, both /dev/sdd and /dev/sdf can be found
under the same multipath map in the output to the multipath -ll command.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using **/dev/sdd**
not **/dev/sdf**

To prevent this warning from appearing, you can configure a filter in the /etc/lvm/lvm.conf file
to restrict the devices that LVM will search for metadata. The filter is a list of patterns that will be
applied to each device found by a scan of /dev (or the directory specified by the dir keyword in the
/etc/lvm/lvm.conf file). Patterns are regular expressions delimited by any character and
preceded by a (for accept) or r (for reject). The list is traversed in order, and the first regex that
matches a device determines if the device will be accepted or rejected (ignored). Devices that don’t
match any patterns are accepted. For general information on LVM filters, see Section 4.5, “Controlling
LVM Device Scans with Filters” .

The filter you configure should include all devices that need to be checked for LVM metadata, such
as the local hard drive with the root volume group on it and any multipathed devices. By rejecting the
underlying paths to a multipath device (such as /dev/sdb, /dev/sdd , and so on) you can avoid
these duplicate PV warnings, since each unique metadata area will only be found once on the
multipath device itself.

The following examples show filters that will avoid duplicate PV warnings due to multiple storage
paths being available.

This filter accepts the second partition on the first hard drive (/dev/sda and any device-mapper-
multipath devices, while rejecting everything else.

filter = ["a|/dev/sda2$|", "a|/dev/mapper/mpath.*|", "r|.*|"]

This filter accepts all HP SmartArray controllers and any EMC PowerPath devices.

filter = ["a|/dev/cciss/.*|", "a|/dev/emcpower.*|", "r|.*|"]

This filter accepts any partitions on the first IDE drive and any multipath devices.

filter = ["a|/dev/hda.*|", "a|/dev/mapper/mpath.*|", "r|.*|"]

Logical Volume Manager Administ rat ion

114

Note

When adding a new filter to the /etc/lvm/lvm.conf file, ensure that the original filter is
either commented out with a # or is removed.

Once a filter has been configured and the /etc/lvm/lvm.conf file has been saved, check the
output of these commands to ensure that no physical volumes or volume groups are missing.

pvscan
vgscan

You can also test a filter on the fly, without modifying the /etc/lvm/lvm.conf file, by adding the -
-config argument to the LVM command, as in the following example.

lvs --config 'devices{ filter = ["a|/dev/emcpower.*|", "r|.*|"] }'

Note

Testing filters using the --config argument will not make permanent changes to the server's
configuration. Make sure to include the working filter in the /etc/lvm/lvm.conf file after
testing.

After configuring an LVM filter, it is recommended that you rebuild the initrd device with the dracut
command so that only the necessary devices are scanned upon reboot.

6.8.3. Duplicate Warnings for Mult ipath Maps

The following examples show a duplicate PV warning for two devices that are both multipath maps.
In these examples we are not looking at two different paths, but two different devices.

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using
/dev/mapper/mpatha not **/dev/mapper/mpathc**

Found duplicate PV GDjTZf7Y03GJHjteqOwrye2dcSCjdaUi: using
/dev/emcpowera not **/dev/emcpowerh**

This situation is more serious than duplicate warnings for devices that are both single paths to the
same device, since these warnings often mean that the machine has been presented devices which it
should not be seeing (for example, LUN clones or mirrors). In this case, unless you have a clear idea
of what devices should be removed from the machine, the situation could be unrecoverable. It is
recommended that you contact Red Hat Technical Support to address this issue.

Chapt er 6 . LVM T roubleshoot ing

115

Appendix A. The Device Mapper

The Device Mapper is a kernel driver that provides a framework for volume management. It provides a
generic way of creating mapped devices, which may be used as logical volumes. It does not
specifically know about volume groups or metadata formats.

The Device Mapper provides the foundation for a number of higher-level technologies. In addition to
LVM, Device-Mapper multipath and the dmraid command use the Device Mapper. The application
interface to the Device Mapper is the ioctl system call. The user interface is the dmsetup
command.

LVM logical volumes are activated using the Device Mapper. Each logical volume is translated into a
mapped device. Each segment translates into a line in the mapping table that describes the device.
The Device Mapper supports a variety of mapping targets, including linear mapping, striped
mapping, and error mapping. For example, two disks may be concatenated into one logical volume
with a pair of linear mappings, one for each disk. When LVM creates a volume, it creates an
underlying device-mapper device that can be queried with the dmsetup command. For information
about the format of devices in a mapping table, see Section A.1, “Device Table Mappings” . For
information about using the dmsetup command to query a device, see Section A.2, “The dmsetup
Command” .

A.1. Device Table Mappings

A mapped device is defined by a table that specifies how to map each range of logical sectors of the
device using a supported Device Table mapping. The table for a mapped device is constructed from
a list of lines of the form:

start length mapping [mapping_parameters...]

In the first line of a Device Mapper table, the start parameter must equal 0. The start + length
parameters on one line must equal the start on the next line. Which mapping parameters are
specified in a line of the mapping table depends on which mapping type is specified on the line.

Sizes in the Device Mapper are always specified in sectors (512 bytes).

When a device is specified as a mapping parameter in the Device Mapper, it can be referenced by the
device name in the filesystem (for example, /dev/hda) or by the major and minor numbers in the
format major:minor. The major:minor format is preferred because it avoids pathname lookups.

The following shows a sample mapping table for a device. In this table there are four linear targets:

0 35258368 linear 8:48 65920
35258368 35258368 linear 8:32 65920
70516736 17694720 linear 8:16 17694976
88211456 17694720 linear 8:16 256

The first 2 parameters of each line are the segment starting block and the length of the segment. The
next keyword is the mapping target, which in all of the cases in this example is linear. The rest of
the line consists of the parameters for a linear target.

The following subsections describe the format of the following mappings:

linear

striped

Logical Volume Manager Administ rat ion

116

mirror

snapshot and snapshot-origin

error

zero

multipath

crypt

A.1.1. T he linear Mapping T arget

A linear mapping target maps a continuous range of blocks onto another block device. The format of
a linear target is as follows:

start length linear device offset

start

starting block in virtual device

length

length of this segment

device

block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format major:minor

offset

starting offset of the mapping on the device

The following example shows a linear target with a starting block in the virtual device of 0, a segment
length of 1638400, a major:minor number pair of 8:2, and a starting offset for the device of 41146992.

0 16384000 linear 8:2 41156992

The following example shows a linear target with the device parameter specified as the device
/dev/hda.

0 20971520 linear /dev/hda 384

A.1.2. T he st riped Mapping T arget

The striped mapping target supports striping across physical devices. It takes as arguments the
number of stripes and the striping chunk size followed by a list of pairs of device name and sector.
The format of a striped target is as follows:

start length striped #stripes chunk_size device1 offset1 ... deviceN
offsetN

There is one set of device and offset parameters for each stripe.

Appendix A. T he Device Mapper

117

start

starting block in virtual device

length

length of this segment

#stripes

number of stripes for the virtual device

chunk_size

number of sectors written to each stripe before switching to the next; must be power of 2 at
least as big as the kernel page size

device

block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format major:minor.

offset

starting offset of the mapping on the device

The following example shows a striped target with three stripes and a chunk size of 128:

0 73728 striped 3 128 8:9 384 8:8 384 8:7 9789824

0

starting block in virtual device

73728

length of this segment

st riped 3 128

stripe across three devices with chunk size of 128 blocks

8:9

major:minor numbers of first device

384

starting offset of the mapping on the first device

8:8

major:minor numbers of second device

384

starting offset of the mapping on the second device

8:7

major:minor numbers of third device

Logical Volume Manager Administ rat ion

118

9 789 824

starting offset of the mapping on the third device

The following example shows a striped target for 2 stripes with 256 KiB chunks, with the device
parameters specified by the device names in the file system rather than by the major and minor
numbers.

0 65536 striped 2 512 /dev/hda 0 /dev/hdb 0

A.1.3. T he mirror Mapping T arget

The mirror mapping target supports the mapping of a mirrored logical device. The format of a
mirrored target is as follows:

start length mirror log_type #logargs logarg1 ... logargN #devs device1
offset1 ... deviceN offsetN

start

starting block in virtual device

length

length of this segment

log_type

The possible log types and their arguments are as follows:

core

The mirror is local and the mirror log is kept in core memory. This log type takes 1
- 3 arguments:

regionsize [[no]sync] [block_on_error]

disk

The mirror is local and the mirror log is kept on disk. This log type takes 2 - 4
arguments:

logdevice regionsize [[no]sync] [block_on_error]

clustered_core

The mirror is clustered and the mirror log is kept in core memory. This log type
takes 2 - 4 arguments:

regionsize UUID [[no]sync] [block_on_error]

clustered_disk

The mirror is clustered and the mirror log is kept on disk. This log type takes 3 - 5
arguments:

logdevice regionsize UUID [[no]sync] [block_on_error]

Appendix A. T he Device Mapper

119

LVM maintains a small log which it uses to keep track of which regions are in sync with the
mirror or mirrors. The regionsize argument specifies the size of these regions.

In a clustered environment, the UUID argument is a unique identifier associated with the
mirror log device so that the log state can be maintained throughout the cluster.

The optional [no]sync argument can be used to specify the mirror as " in-sync" or "out-of-
sync". The block_on_error argument is used to tell the mirror to respond to errors rather
than ignoring them.

#log_args

number of log arguments that will be specified in the mapping

logargs

the log arguments for the mirror; the number of log arguments provided is specified by the
#log-args parameter and the valid log arguments are determined by the log_type
parameter.

#devs

the number of legs in the mirror; a device and an offset is specified for each leg

device

block device for each mirror leg, referenced by the device name in the filesystem or by the
major and minor numbers in the format major:minor. A block device and offset is specified
for each mirror leg, as indicated by the #devs parameter.

offset

starting offset of the mapping on the device. A block device and offset is specified for each
mirror leg, as indicated by the #devs parameter.

The following example shows a mirror mapping target for a clustered mirror with a mirror log kept on
disk.

0 52428800 mirror clustered_disk 4 253:2 1024 UUID block_on_error 3 253:3
0 253:4 0 253:5 0

0

starting block in virtual device

524 28800

length of this segment

mirror clustered_disk

mirror target with a log type specifying that mirror is clustered and the mirror log is
maintained on disk

4

4 mirror log arguments will follow

253:2

major:minor numbers of log device

Logical Volume Manager Administ rat ion

120

1024

region size the mirror log uses to keep track of what is in sync

UUID

UUID of mirror log device to maintain log information throughout a cluster

block_on_error

mirror should respond to errors

3

number of legs in mirror

253:3 0 253:4 0 253:5 0

major:minor numbers and offset for devices constituting each leg of mirror

A.1.4 . T he snapshot and snapshot -origin Mapping T argets

When you create the first LVM snapshot of a volume, four Device Mapper devices are used:

1. A device with a linear mapping containing the original mapping table of the source volume.

2. A device with a linear mapping used as the copy-on-write (COW) device for the source
volume; for each write, the original data is saved in the COW device of each snapshot to keep
its visible content unchanged (until the COW device fills up).

3. A device with a snapshot mapping combining #1 and #2, which is the visible snapshot
volume.

4. The "original" volume (which uses the device number used by the original source volume),
whose table is replaced by a "snapshot-origin" mapping from device #1.

A fixed naming scheme is used to create these devices, For example, you might use the following
commands to create an LVM volume named base and a snapshot volume named snap based on
that volume.

lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base

This yields four devices, which you can view with the following commands:

dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11

ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-
base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-
snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base

Appendix A. T he Device Mapper

121

The format for the snapshot-origin target is as follows:

start length snapshot-origin origin

start

starting block in virtual device

length

length of this segment

origin

base volume of snapshot

The snapshot-origin will normally have one or more snapshots based on it. Reads will be
mapped directly to the backing device. For each write, the original data will be saved in the COW
device of each snapshot to keep its visible content unchanged until the COW device fills up.

The format for the snapshot target is as follows:

start length snapshot origin COW-device P|N chunksize

start

starting block in virtual device

length

length of this segment

origin

base volume of snapshot

COW-device

device on which changed chunks of data are stored

P|N

P (Persistent) or N (Not persistent); indicates whether the snapshot will survive after reboot.
For transient snapshots (N) less metadata must be saved on disk; they can be kept in
memory by the kernel.

chunksize

size in sectors of changed chunks of data that will be stored on the COW device

The following example shows a snapshot-origin target with an origin device of 254:11.

0 2097152 snapshot-origin 254:11

The following example shows a snapshot target with an origin device of 254:11 and a COW device
of 254:12. This snapshot device is persistent across reboots and the chunk size for the data stored
on the COW device is 16 sectors.

0 2097152 snapshot 254:11 254:12 P 16

Logical Volume Manager Administ rat ion

122

A.1.5. T he error Mapping T arget

With an error mapping target, any I/O operation to the mapped sector fails.

An error mapping target can be used for testing. To test how a device behaves in failure, you can
create a device mapping with a bad sector in the middle of a device, or you can swap out the leg of a
mirror and replace the leg with an error target.

An error target can be used in place of a failing device, as a way of avoiding timeouts and retries on
the actual device. It can serve as an intermediate target while you rearrange LVM metadata during
failures.

The error mapping target takes no additional parameters besides the start and length parameters.

The following example shows an error target.

0 65536 error

A.1.6. T he zero Mapping T arget

The zero mapping target is a block device equivalent of /dev/zero . A read operation to this
mapping returns blocks of zeros. Data written to this mapping is discarded, but the write succeeds.
The zero mapping target takes no additional parameters besides the start and length parameters.

The following example shows a zero target for a 16Tb Device.

0 65536 zero

A.1.7. T he mult ipath Mapping T arget

The multipath mapping target supports the mapping of a multipathed device. The format for the
multipath target is as follows:

start length multipath #features [feature1 ... featureN] #handlerargs
[handlerarg1 ... handlerargN] #pathgroups pathgroup pathgroupargs1 ...
pathgroupargsN

There is one set of pathgroupargs parameters for each path group.

start

starting block in virtual device

length

length of this segment

#features

The number of multipath features, followed by those features. If this parameter is zero, then
there is no feature parameter and the next device mapping parameter is #handlerargs.
Currently there is one supported feature that can be set with the features attribute in the
multipath.conf file, queue_if_no_path. This indicates that this multipathed device is
currently set to queue I/O operations if there is no path available.

Appendix A. T he Device Mapper

123

In the following example, the no_path_retry attribute in the multipath.conf file has
been set to queue I/O operations only until all paths have been marked as failed after a set
number of attempts have been made to use the paths. In this case, the mapping appears as
follows until all the path checkers have failed the specified number of checks.

0 71014400 multipath 1 queue_if_no_path 0 2 1 round-robin 0 2 1
66:128 \
1000 65:64 1000 round-robin 0 2 1 8:0 1000 67:192 1000

After all the path checkers have failed the specified number of checks, the mapping would
appear as follows.

0 71014400 multipath 0 0 2 1 round-robin 0 2 1 66:128 1000 65:64
1000 \
round-robin 0 2 1 8:0 1000 67:192 1000

#handlerargs

The number of hardware handler arguments, followed by those arguments. A hardware
handler specifies a module that will be used to perform hardware-specific actions when
switching path groups or handling I/O errors. If this is set to 0, then the next parameter is
#pathgroups.

#pathgroups

The number of path groups. A path group is the set of paths over which a multipathed
device will load balance. There is one set of pathgroupargs parameters for each path
group.

pathgroup

The next path group to try.

pathgroupsargs

Each path group consists of the following arguments:

pathselector #selectorargs #paths #pathargs device1 ioreqs1 ...
deviceN ioreqsN

There is one set of path arguments for each path in the path group.

pathselector

Specifies the algorithm in use to determine what path in this path group to use for
the next I/O operation.

#selectorargs

The number of path selector arguments which follow this argument in the
multipath mapping. Currently, the value of this argument is always 0.

#paths

The number of paths in this path group.

#pathargs

The number of path arguments specified for each path in this group. Currently this

Logical Volume Manager Administ rat ion

124

The number of path arguments specified for each path in this group. Currently this
number is always 1, the ioreqs argument.

device

The block device number of the path, referenced by the major and minor numbers
in the format major:minor

ioreqs

The number of I/O requests to route to this path before switching to the next path
in the current group.

Figure A.1, “Multipath Mapping Target” shows the format of a multipath target with two path groups.

Figure A.1. Mult ipath Mapping Target

The following example shows a pure failover target definition for the same multipath device. In this
target there are four path groups, with only one open path per path group so that the multipathed
device will use only one path at a time.

0 71014400 multipath 0 0 4 1 round-robin 0 1 1 66:112 1000 \
round-robin 0 1 1 67:176 1000 round-robin 0 1 1 68:240 1000 \
round-robin 0 1 1 65:48 1000

The following example shows a full spread (multibus) target definition for the same multipathed
device. In this target there is only one path group, which includes all of the paths. In this setup,
multipath spreads the load evenly to all of the paths.

0 71014400 multipath 0 0 1 1 round-robin 0 4 1 66:112 1000 \
 67:176 1000 68:240 1000 65:48 1000

For further information about multipathing, see the DM Multipath manual.

A.1.8. T he crypt Mapping T arget

The crypt target encrypts the data passing through the specified device. It uses the kernel Crypto
API.

Appendix A. T he Device Mapper

125

The format for the crypt target is as follows:

start length crypt cipher key IV-offset device offset

start

starting block in virtual device

length

length of this segment

cipher

Cipher consists of cipher[-chainmode]-ivmode[:iv options].

cipher

Ciphers available are listed in /proc/crypto (for example, aes).

chainmode

Always use cbc. Do not use ebc; it does not use an initial vector (IV).

ivmode[:iv options]

IV is an initial vector used to vary the encryption. The IV mode is plain or
essiv:hash. An ivmode of -plain uses the sector number (plus IV offset) as
the IV. An ivmode of -essiv is an enhancement avoiding a watermark weakness.

key

Encryption key, supplied in hex

IV-offset

Initial Vector (IV) offset

device

block device, referenced by the device name in the filesystem or by the major and minor
numbers in the format major:minor

offset

starting offset of the mapping on the device

The following is an example of a crypt target.

0 2097152 crypt aes-plain 0123456789abcdef0123456789abcdef 0 /dev/hda 0

A.2. The dmsetup Command

The dmsetup command is a command line wrapper for communication with the Device Mapper. For
general system information about LVM devices, you may find the info , ls, status, and deps
options of the dmsetup command to be useful, as described in the following subsections.

For information about additional options and capabilities of the dmsetup command, see the
dmsetup(8) man page.

Logical Volume Manager Administ rat ion

126

A.2.1. T he dmsetup info Command

The dmsetup info device command provides summary information about Device Mapper
devices. If you do not specify a device name, the output is information about all of the currently
configured Device Mapper devices. If you specify a device, then this command yields information for
that device only.

The dmsetup info command provides information in the following categories:

Name

The name of the device. An LVM device is expressed as the volume group name and the
logical volume name separated by a hyphen. A hyphen in the original name is translated to
two hyphens. During standard LVM operations, you should not use the name of an LVM
device in this format to specify an LVM device directly, but instead you should use the vg/lv
alternative.

State

Possible device states are SUSPENDED , ACTIVE, and READ-ONLY . The dmsetup
suspend command sets a device state to SUSPENDED . When a device is suspended, all I/O
operations to that device stop. The dmsetup resume command restores a device state to
ACTIVE.

Read Ahead

The number of data blocks that the system reads ahead for any open file on which read
operations are ongoing. By default, the kernel chooses a suitable value automatically. You
can change this value with the --readahead option of the dmsetup command.

Tables present

Possible states for this category are LIVE and INACTIVE. An INACTIVE state indicates
that a table has been loaded which will be swapped in when a dmsetup resume command
restores a device state to ACTIVE, at which point the table's state becomes LIVE. For
information, see the dmsetup man page.

Open count

The open reference count indicates how many times the device is opened. A mount
command opens a device.

Event number

The current number of events received. Issuing a dmsetup wait n command allows you
to wait for the n'th event, blocking the call until it is received.

Major, minor

Major and minor device number.

Number of targets

The number of segments that make up a device. For example, a linear device spanning 3
disks would have 3 targets. A linear device composed of the beginning and end of a disk,
but not the middle would have 2 targets.

UUID

UUID of the device.

Appendix A. T he Device Mapper

127

The following example shows partial output for the dmsetup info command.

dmsetup info
Name: testgfsvg-testgfslv1
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 0
Event number: 0
Major, minor: 253, 2
Number of targets: 2
UUID: LVM-
K528WUGQgPadNXYcFrrf9LnPlUMswgkCkpgPIgYzSvigM7SfeWCypddNSWtNzc2N
...
Name: VolGroup00-LogVol00
State: ACTIVE
Read Ahead: 256
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 253, 0
Number of targets: 1
UUID: LVM-
tOcS1kqFV9drb0X1Vr8sxeYP0tqcrpdegyqj5lZxe45JMGlmvtqLmbLpBcenh2L3

A.2.2. T he dmsetup ls Command

You can list the device names of mapped devices with the dmsetup ls command. You can list
devices that have at least one target of a specified type with the dmsetup ls --target
target_type command. For other options of the dmsetup ls command, see the dmsetup man
page.

The following example shows the command to list the device names of currently configured mapped
devices.

dmsetup ls
testgfsvg-testgfslv3 (253:4)
testgfsvg-testgfslv2 (253:3)
testgfsvg-testgfslv1 (253:2)
VolGroup00-LogVol01 (253:1)
VolGroup00-LogVol00 (253:0)

The following example shows the command to list the device names of currently configured mirror
mappings.

dmsetup ls --target mirror
lock_stress-grant--02.1722 (253, 34)
lock_stress-grant--01.1720 (253, 18)
lock_stress-grant--03.1718 (253, 52)
lock_stress-grant--02.1716 (253, 40)
lock_stress-grant--03.1713 (253, 47)
lock_stress-grant--02.1709 (253, 23)
lock_stress-grant--01.1707 (253, 8)
lock_stress-grant--01.1724 (253, 14)
lock_stress-grant--03.1711 (253, 27)

Logical Volume Manager Administ rat ion

128

LVM configurations that are stacked on multipath or other device mapper devices can be complex to
sort out. The dmsetup ls command provides a --tree option that displays dependencies between
devices as a tree, as in the following example.

dmsetup ls --tree
vgtest-lvmir (253:13)
 ├─vgtest-lvmir_mimage_1 (253:12)
 │ └─mpathep1 (253:8)
 │ └─mpathe (253:5)
 │ ├─ (8:112)
 │ └─ (8:64)
 ├─vgtest-lvmir_mimage_0 (253:11)
 │ └─mpathcp1 (253:3)
 │ └─mpathc (253:2)
 │ ├─ (8:32)
 │ └─ (8:16)
 └─vgtest-lvmir_mlog (253:4)
 └─mpathfp1 (253:10)
 └─mpathf (253:6)
 ├─ (8:128)
 └─ (8:80)

A.2.3. T he dmsetup status Command

The dmsetup status device command provides status information for each target in a specified
device. If you do not specify a device name, the output is information about all of the currently
configured Device Mapper devices. You can list the status only of devices that have at least one
target of a specified type with the dmsetup status --target target_type command.

The following example shows the command to list the status of the targets in all currently configured
mapped devices.

dmsetup status
testgfsvg-testgfslv3: 0 312352768 linear
testgfsvg-testgfslv2: 0 312352768 linear
testgfsvg-testgfslv1: 0 312352768 linear
testgfsvg-testgfslv1: 312352768 50331648 linear
VolGroup00-LogVol01: 0 4063232 linear
VolGroup00-LogVol00: 0 151912448 linear

A.2.4 . T he dmsetup deps Command

The dmsetup deps device command provides a list of (major, minor) pairs for devices referenced
by the mapping table for the specified device. If you do not specify a device name, the output is
information about all of the currently configured Device Mapper devices.

The following example shows the command to list the dependencies of all currently configured
mapped devices.

dmsetup deps
testgfsvg-testgfslv3: 1 dependencies : (8, 16)
testgfsvg-testgfslv2: 1 dependencies : (8, 16)
testgfsvg-testgfslv1: 1 dependencies : (8, 16)

Appendix A. T he Device Mapper

129

VolGroup00-LogVol01: 1 dependencies : (8, 2)
VolGroup00-LogVol00: 1 dependencies : (8, 2)

The following example shows the command to list the dependencies only of the device
lock_stress-grant--02.1722:

dmsetup deps lock_stress-grant--02.1722
3 dependencies : (253, 33) (253, 32) (253, 31)

A.3. Device Mapper Support for the udev Device Manager

The primary role of the udev device manager is to provide a dynamic way of setting up nodes in the
/dev directory. The creation of these nodes is directed by the application of udev rules in user
space. These rules are processed on udev events sent from the kernel directly as a result of adding,
removing or changing particular devices. This provides a convenient and central mechanism for
hotplugging support.

Besides creating the actual nodes, the udev device manager is able to create symbolic links which
you can name. This provides you the freedom to choose their own customized naming and directory
structure in the/dev directory, if needed.

Each udev event contains basic information about the device being processed, such as its name,
the subsystem it belongs to, the device's type, its major and minor number used, and the type of the
event. Given that, and having the possibility of accessing all the information found in the /sys
directory that is also accessible within udev rules, you are able to utilize simple filters based on this
information and run the rules conditionally based on this information.

The udev device manager also provides a centralized way of setting up the nodes' permissions. You
can easily add a customized set of rules to define the permissions for any device specified by any bit
of information that is available while processing the event.

It is also possible to add program hooks in udev rules directly. The udev device manager can call
these programs to provide further processing that is needed to handle the event. Also, the program
can export environment variables as a result of this processing. Any results given can be used
further in the rules as a supplementary source of information.

Any software using the udev library is able to receive and process udev events with all the
information that is available, so the processing is not bound to the udev daemon only.

A.3.1. udev Integrat ion with the Device Mapper

The Device Mapper provides direct support for udev integration. This synchronizes the Device
Mapper with all udev processing related to Device Mapper devices, including LVM devices. The
synchronization is needed since the rule application in the udev daemon is a form of parallel
processing with the program that is the source of the device's changes (such as dmsetup and LVM).
Without this support, it was a common problem for a user to try to remove a device that was still open
and processed by udev rules as a result of a previous change event; this was particularly common
when there was a very short time between changes for that device.

Red Hat Enterprise Linux provides officially supported udev rules for Device Mapper devices in
general and for LVM as well. Table A.1, “udev Rules for Device-Mapper Devices” summarizes these
rules, which are installed in /lib/udev/rules.d .

Table A.1. udev Rules for Device-Mapper Devices

Logical Volume Manager Administ rat ion

130

Filename Descript ion
10-dm.rules Contains general Device Mapper rules and creates the

symlinks in /dev/mapper with a /dev/dm-N target where N
is a number assigned dynamically to a device by the kernel
(/dev/dm-N is a node)

NOTE: /dev/dm-N nodes should never be used in scripts to
access the device since the N number is assigned
dynamically and changes with the sequence of how devices
are activated. Therefore, true names in the /dev/mapper
directory should be used. This layout is to support udev
requirements of how nodes/symlinks should be created.

11-dm-lvm.rules Contains rules applied for LVM devices and creates the
symlinks for the volume group's logical volumes. The
symlinks are created in the /dev/vgname directory with a
/dev/dm-N target.

NOTE: To be consistent with the standard for naming all
future rules for Device Mapper subsystems, udev rules
should follow the format 11-dm-subsystem_name.rules.
Any libdevmapper users providing udev rules as well
should follow this standard.

13-dm-disk.rules Contains rules to be applied for all Device Mapper devices in
general and creates symlinks in the /dev/disk/by-id
and the /dev/disk/by-uuid directories.

95-dm-notify.rules Contains the rule to notify the waiting process using
libdevmapper (just like LVM and dmsetup). The
notification is done after all previous rules are applied, to
ensure any udev processing is complete. Notified process is
then resumed.

69-dm-lvm-metad.rules Contains a hook to trigger an LVM scan on any newly
appeared block device in the system and do any LVM
autoactivation if possible. This supports the lvmetad
daemon, which is set with use_lvmetad=1 in the
lvm.conf file. The lvmetad daemon and autoactivation
are not supported in a clustered environment.

You can add additional customized permission rules by means of the 12-dm-
permissions.rules file. This file is not installed in the /lib/udev/rules directory; it is found in
the /usr/share/doc/device-mapper-version directory. The 12-dm-permissions.rules
file is a template containing hints for how to set the permissions, based on some matching rules
given as an example; the file contains examples for some common situations. You can edit this file
and place it manually in the /etc/udev/rules.d directory where it will survive updates, so the
settings will remain.

These rules set all basic variables that could be used by any other rules while processing the events.

The following variables are set in 10-dm.rules:

DM_NAME: Device Mapper device name

DM_UUID : Device Mapper device UUID

DM_SUSPENDED : the suspended state of Device Mapper device

Appendix A. T he Device Mapper

131

DM_UDEV_RULES_VSN: udev rules version (this is primarily for all other rules to check that
previously mentioned variables are set directly by official Device Mapper rules)

The following variables are set in 11-dm-lvm.rules:

DM_LV_NAME: logical volume name

DM_VG_NAME: volume group name

DM_LV_LAYER : LVM layer name

All these variables can be used in the 12-dm-permissions.rules file to define a permission for
specific Device Mapper devices, as documented in the 12-dm-permissions.rules file.

A.3.2. Commands and Interfaces that Support udev

Table A.2, “dmsetup Commands to Support udev” summarizes the dmsetup commands that support
udev integration.

Table A.2. dmsetup Commands to Support udev

Command Descript ion
dmsetup udevcomplete Used to notify that udev has completed processing the rules

and unlocks waiting process (called from within udev rules
in 95-dm-notify.rules).

dmsetup udevcomplete_all Used for debugging purposes to manually unlock all waiting
processes.

dmsetup udevcookies Used for debugging purposes, to show all existing cookies
(system-wide semaphores).

dmsetup udevcreatecookie Used to create a cookie (semaphore) manually. This is
useful to run more processes under one synchronization
resource.

dmsetup udevreleasecookie Used to wait for all udev processing related to all processes
put under that one synchronization cookie.

The dmsetup options that support udev integration are as follows.

--udevcookie

Needs to be defined for all dmsetup processes we would like to add into a udev
transaction. It is used in conjunction with udevcreatecookie and
udevreleasecookie:

COOKIE=$(dmsetup udevcreatecookie)
 dmsetup command --udevcookie $COOKIE
 dmsetup command --udevcookie $COOKIE

 dmsetup command --udevcookie $COOKIE
dmsetup udevreleasecookie --udevcookie $COOKIE

Besides using the --udevcookie option, you can just export the variable into an
environment of the process:

export DM_UDEV_COOKIE=$(dmsetup udevcreatecookie)
 dmsetup command ...
 dmsetup command ...

Logical Volume Manager Administ rat ion

132

 ...
 dmsetup command ...

--noudevrules

Disables udev rules. Nodes/symlinks will be created by libdevmapper itself (the old way).
This option is for debugging purposes, if udev does not work correctly.

--noudevsync

Disables udev synchronization. This is also for debugging purposes.

For more information on the dmsetup command and its options, see the dmsetup(8) man page.

The LVM commands support the following options that support udev integration:

--noudevrules: as for the dmsetup command, disables udev rules.

--noudevsync: as for the dmsetup command, disables udev synchronization.

The lvm.conf file includes the following options that support udev integration:

udev_rules: enables/disables udev_rules for all LVM2 commands globally.

udev_sync: enables/disables udev synchronization for all LVM commands globally.

For more information on the lvm.conf file options, see the inline comments in the lvm.conf file.

Appendix A. T he Device Mapper

133

Appendix B. The LVM Configuration Files

LVM supports multiple configuration files. At system startup, the lvm.conf configuration file is
loaded from the directory specified by the environment variable LVM_SYSTEM_DIR , which is set to
/etc/lvm by default.

The lvm.conf file can specify additional configuration files to load. Settings in later files override
settings from earlier ones. To display the settings in use after loading all the configuration files,
execute the lvmconfig command.

For information on loading additional configuration files, see Section D.2, “Host Tags” .

B.1. The LVM Configurat ion Files

The following files are used for LVM configuration:

/etc/lvm/lvm.conf

Central configuration file read by the tools.

etc/lvm/lvm_hosttag.conf

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that
file defines new tags, then further configuration files will be appended to the list of files to
read in. For information on host tags, see Section D.2, “Host Tags” .

In addition to the LVM configuration files, a system running LVM includes the following files that affect
LVM system setup:

/etc/lvm/cache/.cache

Device name filter cache file (configurable).

/etc/lvm/backup/

Directory for automatic volume group metadata backups (configurable).

/etc/lvm/archive/

Directory for automatic volume group metadata archives (configurable with regard to
directory path and archive history depth).

/var/lock/lvm/

In single-host configuration, lock files to prevent parallel tool runs from corrupting the
metadata; in a cluster, cluster-wide DLM is used.

B.2. The lvmconfig Command

You can display the current LVM configuration, or save the configuration to a file, with the
lvmconfig command. There are a variety of features that the lvmconfig command provides,
including the following;

You can dump the current lvm configuration merged with any tag configuration files.

You can dump all current configuration settings for which the values differ from the defaults.

Logical Volume Manager Administ rat ion

134

You can dump all new configuration settings introduced in the current LVM version, in a specific
LVM version.

You can dump all configuration settings that can be customized in a profile, either in their entirety
or separately for command and metadata profiles. For information on LVM profiles see
Section B.3, “LVM Profiles” .

You can dump only the configuration settings for a specific version of LVM.

You can validate the current configuration.

For a full list of supported features and information on specifying the lvmconfig options, see the
lvmconfig man page.

B.3. LVM Profiles

An LVM profile is a set of selected customizable configuration settings that can be used to achieve
certain characteristics in various environments or uses. Normally, the name of the profile should
reflect that environment or use. An LVM profile overrides existing configuration.

There are two groups of LVM profiles that LVM recognizes: command profiles and metadata profiles.

A command profile is used to override selected configuration settings at the global LVM command
level. The profile is applied at the beginning of LVM command execution and it is used throughout
the time of the LVM command execution. You apply a command profile by specifying the --
commandprofile ProfileName option when executing an LVM command.

A metadata profile is used to override selected configuration settings at the volume group/logical
volume level. It is applied independently for each volume group/logical volume that is being
processed. As such, each volume group/logical volume can store the profile name used in its
metadata so that next time the volume group/logical volume is processed, the profile is applied
automatically. If the volume group and any of its logical volumes have different profiles defined,
the profile defined for the logical volume is preferred.

You can attach a metadata profile to a volume group or logical volume by specifying the --
metadataprofile ProfileName option when you create the volume group or logical
volume with the vgcreate or lvcreate command.

You can attach or detach a metadata profile to an existing volume group or logical volume by
specifying the --metadataprofile ProfileName or the --detachprofile option of the
lvchange or vgchange command.

You can specify the -o vg_profile and -o lv_profile output options of the vgs and
lvs commands to display the metadata profile currently attached to a volume group or a
logical volume.

The set of options allowed for command profiles and the set of options allowed for metadata profiles
are mutually exclusive. The settings that belong to either of these two sets cannot be mixed together
and the LVM tools will reject such profiles.

LVM provides a few predefined configuration profiles. The LVM profiles are stored in the
/etc/lvm/profile directory by default. This location can be changed by using the
profile_dir setting in the /etc/lvm/lvm.conf file. Each profile configuration is stored in
ProfileName.profile file in the profile directory. When referencing the profile in an LVM command,
the .profile suffix is omitted.

You can create additional profiles with different values. For this purpose, LVM provides the
command_profile_template.profile file (for command profiles) and the

Appendix B. T he LVM Configurat ion Files

135

metadata_profile_template.profile file (for metadata profiles) which contain all settings that
are customizable by profiles of each type. You can copy these template profiles and edit them as
needed.

Alternatively, you can use the lvmconfig command to generate a new profile for a given section of
the profile file for either profile type. The following command creates a new command profile named
ProfileName.profile consisting of the settings in section.

lvmconfig --file ProfileName.profile --type profilable-command section

The following command creates a new metadata profile named ProfileName.profile consisting of the
settings in section.

lvmconfig --file ProfileName.profile --type profilable-metadata section

If the section is not specified, all settings that can be customized by a profile are reported.

B.4. Sample lvm.conf File

The following is a sample lvm.conf configuration file. Your configuration file may differ slightly
from this one.

Note

You can generate an lvm.conf file with all of the default values set and with the comments
included by running the following command:

lvmconfig --type default --withcomments

This is an example configuration file for the LVM2 system.
It contains the default settings that would be used if there was no
/etc/lvm/lvm.conf file.
#
Refer to 'man lvm.conf' for further information including the file
layout.
#
Refer to 'man lvm.conf' for information about how settings configured
in
this file are combined with built-in values and command line options to
arrive at the final values used by LVM.
#
Refer to 'man lvmconfig' for information about displaying the built-in
and configured values used by LVM.
#
If a default value is set in this file (not commented out), then a
new version of LVM using this file will continue using that value,
even if the new version of LVM changes the built-in default value.
#
To put this file in a different directory and override /etc/lvm set
the environment variable LVM_SYSTEM_DIR before running the tools.

Logical Volume Manager Administ rat ion

136

#
N.B. Take care that each setting only appears once if uncommenting
example settings in this file.

Configuration section config.
How LVM configuration settings are handled.
config {

 # Configuration option config/checks.
 # If enabled, any LVM configuration mismatch is reported.
 # This implies checking that the configuration key is understood by
 # LVM and that the value of the key is the proper type. If disabled,
 # any configuration mismatch is ignored and the default value is used
 # without any warning (a message about the configuration key not being
 # found is issued in verbose mode only).
 checks = 1

 # Configuration option config/abort_on_errors.
 # Abort the LVM process if a configuration mismatch is found.
 abort_on_errors = 0

 # Configuration option config/profile_dir.
 # Directory where LVM looks for configuration profiles.
 profile_dir = "/etc/lvm/profile"
}

Configuration section devices.
How LVM uses block devices.
devices {

 # Configuration option devices/dir.
 # Directory in which to create volume group device nodes.
 # Commands also accept this as a prefix on volume group names.
 # This configuration option is advanced.
 dir = "/dev"

 # Configuration option devices/scan.
 # Directories containing device nodes to use with LVM.
 # This configuration option is advanced.
 scan = ["/dev"]

 # Configuration option devices/obtain_device_list_from_udev.
 # Obtain the list of available devices from udev.
 # This avoids opening or using any inapplicable non-block devices or
 # subdirectories found in the udev directory. Any device node or
 # symlink not managed by udev in the udev directory is ignored. This
 # setting applies only to the udev-managed device directory; other
 # directories will be scanned fully. LVM needs to be compiled with
 # udev support for this setting to apply.
 obtain_device_list_from_udev = 1

 # Configuration option devices/external_device_info_source.
 # Select an external device information source.
 # Some information may already be available in the system and LVM can
 # use this information to determine the exact type or use of devices it

Appendix B. T he LVM Configurat ion Files

137

 # processes. Using an existing external device information source can
 # speed up device processing as LVM does not need to run its own native
 # routines to acquire this information. For example, this information
 # is used to drive LVM filtering like MD component detection, multipath
 # component detection, partition detection and others.
 #
 # Accepted values:
 # none
 # No external device information source is used.
 # udev
 # Reuse existing udev database records. Applicable only if LVM is
 # compiled with udev support.
 #
 external_device_info_source = "none"

 # Configuration option devices/preferred_names.
 # Select which path name to display for a block device.
 # If multiple path names exist for a block device, and LVM needs to
 # display a name for the device, the path names are matched against
 # each item in this list of regular expressions. The first match is
 # used. Try to avoid using undescriptive /dev/dm-N names, if present.
 # If no preferred name matches, or if preferred_names are not defined,
 # the following built-in preferences are applied in order until one
 # produces a preferred name:
 # Prefer names with path prefixes in the order of:
 # /dev/mapper, /dev/disk, /dev/dm-*, /dev/block.
 # Prefer the name with the least number of slashes.
 # Prefer a name that is a symlink.
 # Prefer the path with least value in lexicographical order.
 #
 # Example
 # preferred_names = ["^/dev/mpath/", "^/dev/mapper/mpath",
"^/dev/[hs]d"]
 #
 preferred_names = ["^/dev/mpath/", "^/dev/mapper/mpath", "^/dev/[hs]d"
]

 # Configuration option devices/filter.
 # Limit the block devices that are used by LVM commands.
 # This is a list of regular expressions used to accept or reject block
 # device path names. Each regex is delimited by a vertical bar '|'
 # (or any character) and is preceded by 'a' to accept the path, or
 # by 'r' to reject the path. The first regex in the list to match the
 # path is used, producing the 'a' or 'r' result for the device.
 # When multiple path names exist for a block device, if any path name
 # matches an 'a' pattern before an 'r' pattern, then the device is
 # accepted. If all the path names match an 'r' pattern first, then the
 # device is rejected. Unmatching path names do not affect the accept
 # or reject decision. If no path names for a device match a pattern,
 # then the device is accepted. Be careful mixing 'a' and 'r' patterns,
 # as the combination might produce unexpected results (test changes.)
 # Run vgscan after changing the filter to regenerate the cache.
 # See the use_lvmetad comment for a special case regarding filters.
 #
 # Example
 # Accept every block device:

Logical Volume Manager Administ rat ion

138

 # filter = ["a|.*/|"]
 # Reject the cdrom drive:
 # filter = ["r|/dev/cdrom|"]
 # Work with just loopback devices, e.g. for testing:
 # filter = ["a|loop|", "r|.*|"]
 # Accept all loop devices and ide drives except hdc:
 # filter = ["a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|"]
 # Use anchors to be very specific:
 # filter = ["a|^/dev/hda8$|", "r|.*/|"]
 #
 # This configuration option has an automatic default value.
 # filter = ["a|.*/|"]

 # Configuration option devices/global_filter.
 # Limit the block devices that are used by LVM system components.
 # Because devices/filter may be overridden from the command line, it is
 # not suitable for system-wide device filtering, e.g. udev and lvmetad.
 # Use global_filter to hide devices from these LVM system components.
 # The syntax is the same as devices/filter. Devices rejected by
 # global_filter are not opened by LVM.
 # This configuration option has an automatic default value.
 # global_filter = ["a|.*/|"]

 # Configuration option devices/cache_dir.
 # Directory in which to store the device cache file.
 # The results of filtering are cached on disk to avoid rescanning dud
 # devices (which can take a very long time). By default this cache is
 # stored in a file named .cache. It is safe to delete this file; the
 # tools regenerate it. If obtain_device_list_from_udev is enabled, the
 # list of devices is obtained from udev and any existing .cache file
 # is removed.
 cache_dir = "/etc/lvm/cache"

 # Configuration option devices/cache_file_prefix.
 # A prefix used before the .cache file name. See devices/cache_dir.
 cache_file_prefix = ""

 # Configuration option devices/write_cache_state.
 # Enable/disable writing the cache file. See devices/cache_dir.
 write_cache_state = 1

 # Configuration option devices/types.
 # List of additional acceptable block device types.
 # These are of device type names from /proc/devices, followed by the
 # maximum number of partitions.
 #
 # Example
 # types = ["fd", 16]
 #
 # This configuration option is advanced.
 # This configuration option does not have a default value defined.

 # Configuration option devices/sysfs_scan.
 # Restrict device scanning to block devices appearing in sysfs.
 # This is a quick way of filtering out block devices that are not
 # present on the system. sysfs must be part of the kernel and mounted.)

Appendix B. T he LVM Configurat ion Files

139

 sysfs_scan = 1

 # Configuration option devices/multipath_component_detection.
 # Ignore devices that are components of DM multipath devices.
 multipath_component_detection = 1

 # Configuration option devices/md_component_detection.
 # Ignore devices that are components of software RAID (md) devices.
 md_component_detection = 1

 # Configuration option devices/fw_raid_component_detection.
 # Ignore devices that are components of firmware RAID devices.
 # LVM must use an external_device_info_source other than none for this
 # detection to execute.
 fw_raid_component_detection = 0

 # Configuration option devices/md_chunk_alignment.
 # Align PV data blocks with md device's stripe-width.
 # This applies if a PV is placed directly on an md device.
 md_chunk_alignment = 1

 # Configuration option devices/default_data_alignment.
 # Default alignment of the start of a PV data area in MB.
 # If set to 0, a value of 64KiB will be used.
 # Set to 1 for 1MiB, 2 for 2MiB, etc.
 # This configuration option has an automatic default value.
 # default_data_alignment = 1

 # Configuration option devices/data_alignment_detection.
 # Detect PV data alignment based on sysfs device information.
 # The start of a PV data area will be a multiple of minimum_io_size or
 # optimal_io_size exposed in sysfs. minimum_io_size is the smallest
 # request the device can perform without incurring a read-modify-write
 # penalty, e.g. MD chunk size. optimal_io_size is the device's
 # preferred unit of receiving I/O, e.g. MD stripe width.
 # minimum_io_size is used if optimal_io_size is undefined (0).
 # If md_chunk_alignment is enabled, that detects the optimal_io_size.
 # This setting takes precedence over md_chunk_alignment.
 data_alignment_detection = 1

 # Configuration option devices/data_alignment.
 # Alignment of the start of a PV data area in KiB.
 # If a PV is placed directly on an md device and md_chunk_alignment or
 # data_alignment_detection are enabled, then this setting is ignored.
 # Otherwise, md_chunk_alignment and data_alignment_detection are
 # disabled if this is set. Set to 0 to use the default alignment or the
 # page size, if larger.
 data_alignment = 0

 # Configuration option devices/data_alignment_offset_detection.
 # Detect PV data alignment offset based on sysfs device information.
 # The start of a PV aligned data area will be shifted by the
 # alignment_offset exposed in sysfs. This offset is often 0, but may
 # be non-zero. Certain 4KiB sector drives that compensate for windows
 # partitioning will have an alignment_offset of 3584 bytes (sector 7
 # is the lowest aligned logical block, the 4KiB sectors start at

Logical Volume Manager Administ rat ion

14 0

 # LBA -1, and consequently sector 63 is aligned on a 4KiB boundary).
 # pvcreate --dataalignmentoffset will skip this detection.
 data_alignment_offset_detection = 1

 # Configuration option devices/ignore_suspended_devices.
 # Ignore DM devices that have I/O suspended while scanning devices.
 # Otherwise, LVM waits for a suspended device to become accessible.
 # This should only be needed in recovery situations.
 ignore_suspended_devices = 0

 # Configuration option devices/ignore_lvm_mirrors.
 # Do not scan 'mirror' LVs to avoid possible deadlocks.
 # This avoids possible deadlocks when using the 'mirror' segment type.
 # This setting determines whether LVs using the 'mirror' segment type
 # are scanned for LVM labels. This affects the ability of mirrors to
 # be used as physical volumes. If this setting is enabled, it is
 # impossible to create VGs on top of mirror LVs, i.e. to stack VGs on
 # mirror LVs. If this setting is disabled, allowing mirror LVs to be
 # scanned, it may cause LVM processes and I/O to the mirror to become
 # blocked. This is due to the way that the mirror segment type handles
 # failures. In order for the hang to occur, an LVM command must be run
 # just after a failure and before the automatic LVM repair process
 # takes place, or there must be failures in multiple mirrors in the
 # same VG at the same time with write failures occurring moments before
 # a scan of the mirror's labels. The 'mirror' scanning problems do not
 # apply to LVM RAID types like 'raid1' which handle failures in a
 # different way, making them a better choice for VG stacking.
 ignore_lvm_mirrors = 1

 # Configuration option devices/disable_after_error_count.
 # Number of I/O errors after which a device is skipped.
 # During each LVM operation, errors received from each device are
 # counted. If the counter of a device exceeds the limit set here,
 # no further I/O is sent to that device for the remainder of the
 # operation. Setting this to 0 disables the counters altogether.
 disable_after_error_count = 0

 # Configuration option devices/require_restorefile_with_uuid.
 # Allow use of pvcreate --uuid without requiring --restorefile.
 require_restorefile_with_uuid = 1

 # Configuration option devices/pv_min_size.
 # Minimum size in KiB of block devices which can be used as PVs.
 # In a clustered environment all nodes must use the same value.
 # Any value smaller than 512KiB is ignored. The previous built-in
 # value was 512.
 pv_min_size = 2048

 # Configuration option devices/issue_discards.
 # Issue discards to PVs that are no longer used by an LV.
 # Discards are sent to an LV's underlying physical volumes when the LV
 # is no longer using the physical volumes' space, e.g. lvremove,
 # lvreduce. Discards inform the storage that a region is no longer
 # used. Storage that supports discards advertise the protocol-specific
 # way discards should be issued by the kernel (TRIM, UNMAP, or
 # WRITE SAME with UNMAP bit set). Not all storage will support or

Appendix B. T he LVM Configurat ion Files

14 1

 # benefit from discards, but SSDs and thinly provisioned LUNs
 # generally do. If enabled, discards will only be issued if both the
 # storage and kernel provide support.
 issue_discards = 0

 # Configuration option devices/allow_changes_with_duplicate_pvs.
 # Allow VG modification while a PV appears on multiple devices.
 # When a PV appears on multiple devices, LVM attempts to choose the
 # best device to use for the PV. If the devices represent the same
 # underlying storage, the choice has minimal consequence. If the
 # devices represent different underlying storage, the wrong choice
 # can result in data loss if the VG is modified. Disabling this
 # setting is the safest option because it prevents modifying a VG
 # or activating LVs in it while a PV appears on multiple devices.
 # Enabling this setting allows the VG to be used as usual even with
 # uncertain devices.
 allow_changes_with_duplicate_pvs = 0
}

Configuration section allocation.
How LVM selects space and applies properties to LVs.
allocation {

 # Configuration option allocation/cling_tag_list.
 # Advise LVM which PVs to use when searching for new space.
 # When searching for free space to extend an LV, the 'cling' allocation
 # policy will choose space on the same PVs as the last segment of the
 # existing LV. If there is insufficient space and a list of tags is
 # defined here, it will check whether any of them are attached to the
 # PVs concerned and then seek to match those PV tags between existing
 # extents and new extents.
 #
 # Example
 # Use the special tag "@*" as a wildcard to match any PV tag:
 # cling_tag_list = ["@*"]
 # LVs are mirrored between two sites within a single VG, and
 # PVs are tagged with either @site1 or @site2 to indicate where
 # they are situated:
 # cling_tag_list = ["@site1", "@site2"]
 #
 # This configuration option does not have a default value defined.

 # Configuration option allocation/maximise_cling.
 # Use a previous allocation algorithm.
 # Changes made in version 2.02.85 extended the reach of the 'cling'
 # policies to detect more situations where data can be grouped onto
 # the same disks. This setting can be used to disable the changes
 # and revert to the previous algorithm.
 maximise_cling = 1

 # Configuration option allocation/use_blkid_wiping.
 # Use blkid to detect existing signatures on new PVs and LVs.
 # The blkid library can detect more signatures than the native LVM
 # detection code, but may take longer. LVM needs to be compiled with
 # blkid wiping support for this setting to apply. LVM native detection
 # code is currently able to recognize: MD device signatures,

Logical Volume Manager Administ rat ion

14 2

 # swap signature, and LUKS signatures. To see the list of signatures
 # recognized by blkid, check the output of the 'blkid -k' command.
 use_blkid_wiping = 1

 # Configuration option allocation/wipe_signatures_when_zeroing_new_lvs.
 # Look for and erase any signatures while zeroing a new LV.
 # The --wipesignatures option overrides this setting.
 # Zeroing is controlled by the -Z/--zero option, and if not specified,
 # zeroing is used by default if possible. Zeroing simply overwrites the
 # first 4KiB of a new LV with zeroes and does no signature detection or
 # wiping. Signature wiping goes beyond zeroing and detects exact types
 # and positions of signatures within the whole LV. It provides a
 # cleaner LV after creation as all known signatures are wiped. The LV
 # is not claimed incorrectly by other tools because of old signatures
 # from previous use. The number of signatures that LVM can detect
 # depends on the detection code that is selected (see
 # use_blkid_wiping.) Wiping each detected signature must be confirmed.
 # When this setting is disabled, signatures on new LVs are not detected
 # or erased unless the --wipesignatures option is used directly.
 wipe_signatures_when_zeroing_new_lvs = 1

 # Configuration option allocation/mirror_logs_require_separate_pvs.
 # Mirror logs and images will always use different PVs.
 # The default setting changed in version 2.02.85.
 mirror_logs_require_separate_pvs = 0

 # Configuration option allocation/raid_stripe_all_devices.
 # Stripe across all PVs when RAID stripes are not specified.
 # If enabled, all PVs in the VG or on the command line are used for
raid0/4/5/6/10
 # when the command does not specify the number of stripes to use.
 # This was the default behaviour until release 2.02.162.
 # This configuration option has an automatic default value.
 # raid_stripe_all_devices = 0

 # Configuration option
allocation/cache_pool_metadata_require_separate_pvs.
 # Cache pool metadata and data will always use different PVs.
 cache_pool_metadata_require_separate_pvs = 0

 # Configuration option allocation/cache_mode.
 # The default cache mode used for new cache.
 #
 # Accepted values:
 # writethrough
 # Data blocks are immediately written from the cache to disk.
 # writeback
 # Data blocks are written from the cache back to disk after some
 # delay to improve performance.
 #
 # This setting replaces allocation/cache_pool_cachemode.
 # This configuration option has an automatic default value.
 # cache_mode = "writethrough"

 # Configuration option allocation/cache_policy.
 # The default cache policy used for new cache volume.

Appendix B. T he LVM Configurat ion Files

14 3

 # Since kernel 4.2 the default policy is smq (Stochastic multique),
 # otherwise the older mq (Multiqueue) policy is selected.
 # This configuration option does not have a default value defined.

 # Configuration section allocation/cache_settings.
 # Settings for the cache policy.
 # See documentation for individual cache policies for more info.
 # This configuration section has an automatic default value.
 # cache_settings {
 # }

 # Configuration option allocation/cache_pool_chunk_size.
 # The minimal chunk size in KiB for cache pool volumes.
 # Using a chunk_size that is too large can result in wasteful use of
 # the cache, where small reads and writes can cause large sections of
 # an LV to be mapped into the cache. However, choosing a chunk_size
 # that is too small can result in more overhead trying to manage the
 # numerous chunks that become mapped into the cache. The former is
 # more of a problem than the latter in most cases, so the default is
 # on the smaller end of the spectrum. Supported values range from
 # 32KiB to 1GiB in multiples of 32.
 # This configuration option does not have a default value defined.

 # Configuration option
allocation/thin_pool_metadata_require_separate_pvs.
 # Thin pool metdata and data will always use different PVs.
 thin_pool_metadata_require_separate_pvs = 0

 # Configuration option allocation/thin_pool_zero.
 # Thin pool data chunks are zeroed before they are first used.
 # Zeroing with a larger thin pool chunk size reduces performance.
 # This configuration option has an automatic default value.
 # thin_pool_zero = 1

 # Configuration option allocation/thin_pool_discards.
 # The discards behaviour of thin pool volumes.
 #
 # Accepted values:
 # ignore
 # nopassdown
 # passdown
 #
 # This configuration option has an automatic default value.
 # thin_pool_discards = "passdown"

 # Configuration option allocation/thin_pool_chunk_size_policy.
 # The chunk size calculation policy for thin pool volumes.
 #
 # Accepted values:
 # generic
 # If thin_pool_chunk_size is defined, use it. Otherwise, calculate
 # the chunk size based on estimation and device hints exposed in
 # sysfs - the minimum_io_size. The chunk size is always at least
 # 64KiB.
 # performance
 # If thin_pool_chunk_size is defined, use it. Otherwise, calculate

Logical Volume Manager Administ rat ion

14 4

 # the chunk size for performance based on device hints exposed in
 # sysfs - the optimal_io_size. The chunk size is always at least
 # 512KiB.
 #
 # This configuration option has an automatic default value.
 # thin_pool_chunk_size_policy = "generic"

 # Configuration option allocation/thin_pool_chunk_size.
 # The minimal chunk size in KiB for thin pool volumes.
 # Larger chunk sizes may improve performance for plain thin volumes,
 # however using them for snapshot volumes is less efficient, as it
 # consumes more space and takes extra time for copying. When unset,
 # lvm tries to estimate chunk size starting from 64KiB. Supported
 # values are in the range 64KiB to 1GiB.
 # This configuration option does not have a default value defined.

 # Configuration option allocation/physical_extent_size.
 # Default physical extent size in KiB to use for new VGs.
 # This configuration option has an automatic default value.
 # physical_extent_size = 4096
}

Configuration section log.
How LVM log information is reported.
log {

 # Configuration option log/report_command_log.
 # Enable or disable LVM log reporting.
 # If enabled, LVM will collect a log of operations, messages,
 # per-object return codes with object identification and associated
 # error numbers (errnos) during LVM command processing. Then the
 # log is either reported solely or in addition to any existing
 # reports, depending on LVM command used. If it is a reporting command
 # (e.g. pvs, vgs, lvs, lvm fullreport), then the log is reported in
 # addition to any existing reports. Otherwise, there's only log report
 # on output. For all applicable LVM commands, you can request that
 # the output has only log report by using --logonly command line
 # option. Use log/command_log_cols and log/command_log_sort settings
 # to define fields to display and sort fields for the log report.
 # You can also use log/command_log_selection to define selection
 # criteria used each time the log is reported.
 # This configuration option has an automatic default value.
 # report_command_log = 0

 # Configuration option log/command_log_sort.
 # List of columns to sort by when reporting command log.
 # See <lvm command> --logonly --configreport log -o help
 # for the list of possible fields.
 # This configuration option has an automatic default value.
 # command_log_sort = "log_seq_num"

 # Configuration option log/command_log_cols.
 # List of columns to report when reporting command log.
 # See <lvm command> --logonly --configreport log -o help
 # for the list of possible fields.
 # This configuration option has an automatic default value.

Appendix B. T he LVM Configurat ion Files

14 5

 # command_log_cols =
"log_seq_num,log_type,log_context,log_object_type,log_object_name,log_ob
ject_id,log_object_group,log_object_group_id,log_message,log_errno,log_r
et_code"

 # Configuration option log/command_log_selection.
 # Selection criteria used when reporting command log.
 # You can define selection criteria that are applied each
 # time log is reported. This way, it is possible to control the
 # amount of log that is displayed on output and you can select
 # only parts of the log that are important for you. To define
 # selection criteria, use fields from log report. See also
 # <lvm command> --logonly --configreport log -S help for the
 # list of possible fields and selection operators. You can also
 # define selection criteria for log report on command line directly
 # using <lvm command> --configreport log -S <selection criteria>
 # which has precedence over log/command_log_selection setting.
 # For more information about selection criteria in general, see
 # lvm(8) man page.
 # This configuration option has an automatic default value.
 # command_log_selection = "!(log_type=status && message=success)"

 # Configuration option log/verbose.
 # Controls the messages sent to stdout or stderr.
 verbose = 0

 # Configuration option log/silent.
 # Suppress all non-essential messages from stdout.
 # This has the same effect as -qq. When enabled, the following commands
 # still produce output: dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck,
 # pvdisplay, pvs, version, vgcfgrestore -l, vgdisplay, vgs.
 # Non-essential messages are shifted from log level 4 to log level 5
 # for syslog and lvm2_log_fn purposes.
 # Any 'yes' or 'no' questions not overridden by other arguments are
 # suppressed and default to 'no'.
 silent = 0

 # Configuration option log/syslog.
 # Send log messages through syslog.
 syslog = 1

 # Configuration option log/file.
 # Write error and debug log messages to a file specified here.
 # This configuration option does not have a default value defined.

 # Configuration option log/overwrite.
 # Overwrite the log file each time the program is run.
 overwrite = 0

 # Configuration option log/level.
 # The level of log messages that are sent to the log file or syslog.
 # There are 6 syslog-like log levels currently in use: 2 to 7 inclusive.
 # 7 is the most verbose (LOG_DEBUG).
 level = 0

 # Configuration option log/indent.

Logical Volume Manager Administ rat ion

14 6

 # Indent messages according to their severity.
 indent = 1

 # Configuration option log/command_names.
 # Display the command name on each line of output.
 command_names = 0

 # Configuration option log/prefix.
 # A prefix to use before the log message text.
 # (After the command name, if selected).
 # Two spaces allows you to see/grep the severity of each message.
 # To make the messages look similar to the original LVM tools use:
 # indent = 0, command_names = 1, prefix = " -- "
 prefix = " "

 # Configuration option log/activation.
 # Log messages during activation.
 # Don't use this in low memory situations (can deadlock).
 activation = 0

 # Configuration option log/debug_classes.
 # Select log messages by class.
 # Some debugging messages are assigned to a class and only appear in
 # debug output if the class is listed here. Classes currently
 # available: memory, devices, activation, allocation, lvmetad,
 # metadata, cache, locking, lvmpolld. Use "all" to see everything.
 debug_classes = ["memory", "devices", "activation", "allocation",
"lvmetad", "metadata", "cache", "locking", "lvmpolld", "dbus"]
}

Configuration section backup.
How LVM metadata is backed up and archived.
In LVM, a 'backup' is a copy of the metadata for the current system,
and an 'archive' contains old metadata configurations. They are
stored in a human readable text format.
backup {

 # Configuration option backup/backup.
 # Maintain a backup of the current metadata configuration.
 # Think very hard before turning this off!
 backup = 1

 # Configuration option backup/backup_dir.
 # Location of the metadata backup files.
 # Remember to back up this directory regularly!
 backup_dir = "/etc/lvm/backup"

 # Configuration option backup/archive.
 # Maintain an archive of old metadata configurations.
 # Think very hard before turning this off.
 archive = 1

 # Configuration option backup/archive_dir.
 # Location of the metdata archive files.
 # Remember to back up this directory regularly!
 archive_dir = "/etc/lvm/archive"

Appendix B. T he LVM Configurat ion Files

14 7

 # Configuration option backup/retain_min.
 # Minimum number of archives to keep.
 retain_min = 10

 # Configuration option backup/retain_days.
 # Minimum number of days to keep archive files.
 retain_days = 30
}

Configuration section shell.
Settings for running LVM in shell (readline) mode.
shell {

 # Configuration option shell/history_size.
 # Number of lines of history to store in ~/.lvm_history.
 history_size = 100
}

Configuration section global.
Miscellaneous global LVM settings.
global {

 # Configuration option global/umask.
 # The file creation mask for any files and directories created.
 # Interpreted as octal if the first digit is zero.
 umask = 077

 # Configuration option global/test.
 # No on-disk metadata changes will be made in test mode.
 # Equivalent to having the -t option on every command.
 test = 0

 # Configuration option global/units.
 # Default value for --units argument.
 units = "h"

 # Configuration option global/si_unit_consistency.
 # Distinguish between powers of 1024 and 1000 bytes.
 # The LVM commands distinguish between powers of 1024 bytes,
 # e.g. KiB, MiB, GiB, and powers of 1000 bytes, e.g. KB, MB, GB.
 # If scripts depend on the old behaviour, disable this setting
 # temporarily until they are updated.
 si_unit_consistency = 1

 # Configuration option global/suffix.
 # Display unit suffix for sizes.
 # This setting has no effect if the units are in human-readable form
 # (global/units = "h") in which case the suffix is always displayed.
 suffix = 1

 # Configuration option global/activation.
 # Enable/disable communication with the kernel device-mapper.
 # Disable to use the tools to manipulate LVM metadata without
 # activating any logical volumes. If the device-mapper driver
 # is not present in the kernel, disabling this should suppress

Logical Volume Manager Administ rat ion

14 8

 # the error messages.
 activation = 1

 # Configuration option global/fallback_to_lvm1.
 # Try running LVM1 tools if LVM cannot communicate with DM.
 # This option only applies to 2.4 kernels and is provided to help
 # switch between device-mapper kernels and LVM1 kernels. The LVM1
 # tools need to be installed with .lvm1 suffices, e.g. vgscan.lvm1.
 # They will stop working once the lvm2 on-disk metadata format is used.
 # This configuration option has an automatic default value.
 # fallback_to_lvm1 = 1

 # Configuration option global/format.
 # The default metadata format that commands should use.
 # The -M 1|2 option overrides this setting.
 #
 # Accepted values:
 # lvm1
 # lvm2
 #
 # This configuration option has an automatic default value.
 # format = "lvm2"

 # Configuration option global/format_libraries.
 # Shared libraries that process different metadata formats.
 # If support for LVM1 metadata was compiled as a shared library use
 # format_libraries = "liblvm2format1.so"
 # This configuration option does not have a default value defined.

 # Configuration option global/segment_libraries.
 # This configuration option does not have a default value defined.

 # Configuration option global/proc.
 # Location of proc filesystem.
 # This configuration option is advanced.
 proc = "/proc"

 # Configuration option global/etc.
 # Location of /etc system configuration directory.
 etc = "/etc"

 # Configuration option global/locking_type.
 # Type of locking to use.
 #
 # Accepted values:
 # 0
 # Turns off locking. Warning: this risks metadata corruption if
 # commands run concurrently.
 # 1
 # LVM uses local file-based locking, the standard mode.
 # 2
 # LVM uses the external shared library locking_library.
 # 3
 # LVM uses built-in clustered locking with clvmd.
 # This is incompatible with lvmetad. If use_lvmetad is enabled,
 # LVM prints a warning and disables lvmetad use.

Appendix B. T he LVM Configurat ion Files

14 9

 # 4
 # LVM uses read-only locking which forbids any operations that
 # might change metadata.
 # 5
 # Offers dummy locking for tools that do not need any locks.
 # You should not need to set this directly; the tools will select
 # when to use it instead of the configured locking_type.
 # Do not use lvmetad or the kernel device-mapper driver with this
 # locking type. It is used by the --readonly option that offers
 # read-only access to Volume Group metadata that cannot be locked
 # safely because it belongs to an inaccessible domain and might be
 # in use, for example a virtual machine image or a disk that is
 # shared by a clustered machine.
 #
 locking_type = 3

 # Configuration option global/wait_for_locks.
 # When disabled, fail if a lock request would block.
 wait_for_locks = 1

 # Configuration option global/fallback_to_clustered_locking.
 # Attempt to use built-in cluster locking if locking_type 2 fails.
 # If using external locking (type 2) and initialisation fails, with
 # this enabled, an attempt will be made to use the built-in clustered
 # locking. Disable this if using a customised locking_library.
 fallback_to_clustered_locking = 1

 # Configuration option global/fallback_to_local_locking.
 # Use locking_type 1 (local) if locking_type 2 or 3 fail.
 # If an attempt to initialise type 2 or type 3 locking failed, perhaps
 # because cluster components such as clvmd are not running, with this
 # enabled, an attempt will be made to use local file-based locking
 # (type 1). If this succeeds, only commands against local VGs will
 # proceed. VGs marked as clustered will be ignored.
 fallback_to_local_locking = 1

 # Configuration option global/locking_dir.
 # Directory to use for LVM command file locks.
 # Local non-LV directory that holds file-based locks while commands are
 # in progress. A directory like /tmp that may get wiped on reboot is OK.
 locking_dir = "/run/lock/lvm"

 # Configuration option global/prioritise_write_locks.
 # Allow quicker VG write access during high volume read access.
 # When there are competing read-only and read-write access requests for
 # a volume group's metadata, instead of always granting the read-only
 # requests immediately, delay them to allow the read-write requests to
 # be serviced. Without this setting, write access may be stalled by a
 # high volume of read-only requests. This option only affects
 # locking_type 1 viz. local file-based locking.
 prioritise_write_locks = 1

 # Configuration option global/library_dir.
 # Search this directory first for shared libraries.
 # This configuration option does not have a default value defined.

Logical Volume Manager Administ rat ion

150

 # Configuration option global/locking_library.
 # The external locking library to use for locking_type 2.
 # This configuration option has an automatic default value.
 # locking_library = "liblvm2clusterlock.so"

 # Configuration option global/abort_on_internal_errors.
 # Abort a command that encounters an internal error.
 # Treat any internal errors as fatal errors, aborting the process that
 # encountered the internal error. Please only enable for debugging.
 abort_on_internal_errors = 0

 # Configuration option global/detect_internal_vg_cache_corruption.
 # Internal verification of VG structures.
 # Check if CRC matches when a parsed VG is used multiple times. This
 # is useful to catch unexpected changes to cached VG structures.
 # Please only enable for debugging.
 detect_internal_vg_cache_corruption = 0

 # Configuration option global/metadata_read_only.
 # No operations that change on-disk metadata are permitted.
 # Additionally, read-only commands that encounter metadata in need of
 # repair will still be allowed to proceed exactly as if the repair had
 # been performed (except for the unchanged vg_seqno). Inappropriate
 # use could mess up your system, so seek advice first!
 metadata_read_only = 0

 # Configuration option global/mirror_segtype_default.
 # The segment type used by the short mirroring option -m.
 # The --type mirror|raid1 option overrides this setting.
 #
 # Accepted values:
 # mirror
 # The original RAID1 implementation from LVM/DM. It is
 # characterized by a flexible log solution (core, disk, mirrored),
 # and by the necessity to block I/O while handling a failure.
 # There is an inherent race in the dmeventd failure handling logic
 # with snapshots of devices using this type of RAID1 that in the
 # worst case could cause a deadlock. (Also see
 # devices/ignore_lvm_mirrors.)
 # raid1
 # This is a newer RAID1 implementation using the MD RAID1
 # personality through device-mapper. It is characterized by a
 # lack of log options. (A log is always allocated for every
 # device and they are placed on the same device as the image,
 # so no separate devices are required.) This mirror
 # implementation does not require I/O to be blocked while
 # handling a failure. This mirror implementation is not
 # cluster-aware and cannot be used in a shared (active/active)
 # fashion in a cluster.
 #
 mirror_segtype_default = "raid1"

 # Configuration option global/raid10_segtype_default.
 # The segment type used by the -i -m combination.
 # The --type raid10|mirror option overrides this setting.
 # The --stripes/-i and --mirrors/-m options can both be specified

Appendix B. T he LVM Configurat ion Files

151

 # during the creation of a logical volume to use both striping and
 # mirroring for the LV. There are two different implementations.
 #
 # Accepted values:
 # raid10
 # LVM uses MD's RAID10 personality through DM. This is the
 # preferred option.
 # mirror
 # LVM layers the 'mirror' and 'stripe' segment types. The layering
 # is done by creating a mirror LV on top of striped sub-LVs,
 # effectively creating a RAID 0+1 array. The layering is suboptimal
 # in terms of providing redundancy and performance.
 #
 raid10_segtype_default = "raid10"

 # Configuration option global/sparse_segtype_default.
 # The segment type used by the -V -L combination.
 # The --type snapshot|thin option overrides this setting.
 # The combination of -V and -L options creates a sparse LV. There are
 # two different implementations.
 #
 # Accepted values:
 # snapshot
 # The original snapshot implementation from LVM/DM. It uses an old
 # snapshot that mixes data and metadata within a single COW
 # storage volume and performs poorly when the size of stored data
 # passes hundreds of MB.
 # thin
 # A newer implementation that uses thin provisioning. It has a
 # bigger minimal chunk size (64KiB) and uses a separate volume for
 # metadata. It has better performance, especially when more data
 # is used. It also supports full snapshots.
 #
 sparse_segtype_default = "thin"

 # Configuration option global/lvdisplay_shows_full_device_path.
 # Enable this to reinstate the previous lvdisplay name format.
 # The default format for displaying LV names in lvdisplay was changed
 # in version 2.02.89 to show the LV name and path separately.
 # Previously this was always shown as /dev/vgname/lvname even when that
 # was never a valid path in the /dev filesystem.
 # This configuration option has an automatic default value.
 # lvdisplay_shows_full_device_path = 0

 # Configuration option global/use_lvmetad.
 # Use lvmetad to cache metadata and reduce disk scanning.
 # When enabled (and running), lvmetad provides LVM commands with VG
 # metadata and PV state. LVM commands then avoid reading this
 # information from disks which can be slow. When disabled (or not
 # running), LVM commands fall back to scanning disks to obtain VG
 # metadata. lvmetad is kept updated via udev rules which must be set
 # up for LVM to work correctly. (The udev rules should be installed
 # by default.) Without a proper udev setup, changes in the system's
 # block device configuration will be unknown to LVM, and ignored
 # until a manual 'pvscan --cache' is run. If lvmetad was running
 # while use_lvmetad was disabled, it must be stopped, use_lvmetad

Logical Volume Manager Administ rat ion

152

 # enabled, and then started. When using lvmetad, LV activation is
 # switched to an automatic, event-based mode. In this mode, LVs are
 # activated based on incoming udev events that inform lvmetad when
 # PVs appear on the system. When a VG is complete (all PVs present),
 # it is auto-activated. The auto_activation_volume_list setting
 # controls which LVs are auto-activated (all by default.)
 # When lvmetad is updated (automatically by udev events, or directly
 # by pvscan --cache), devices/filter is ignored and all devices are
 # scanned by default. lvmetad always keeps unfiltered information
 # which is provided to LVM commands. Each LVM command then filters
 # based on devices/filter. This does not apply to other, non-regexp,
 # filtering settings: component filters such as multipath and MD
 # are checked during pvscan --cache. To filter a device and prevent
 # scanning from the LVM system entirely, including lvmetad, use
 # devices/global_filter.
 use_lvmetad = 0

 # Configuration option global/lvmetad_update_wait_time.
 # The number of seconds a command will wait for lvmetad update to
finish.
 # After waiting for this period, a command will not use lvmetad, and
 # will revert to disk scanning.
 # This configuration option has an automatic default value.
 # lvmetad_update_wait_time = 10

 # Configuration option global/use_lvmlockd.
 # Use lvmlockd for locking among hosts using LVM on shared storage.
 # Applicable only if LVM is compiled with lockd support in which
 # case there is also lvmlockd(8) man page available for more
 # information.
 use_lvmlockd = 0

 # Configuration option global/lvmlockd_lock_retries.
 # Retry lvmlockd lock requests this many times.
 # Applicable only if LVM is compiled with lockd support
 # This configuration option has an automatic default value.
 # lvmlockd_lock_retries = 3

 # Configuration option global/sanlock_lv_extend.
 # Size in MiB to extend the internal LV holding sanlock locks.
 # The internal LV holds locks for each LV in the VG, and after enough
 # LVs have been created, the internal LV needs to be extended. lvcreate
 # will automatically extend the internal LV when needed by the amount
 # specified here. Setting this to 0 disables the automatic extension
 # and can cause lvcreate to fail. Applicable only if LVM is compiled
 # with lockd support
 # This configuration option has an automatic default value.
 # sanlock_lv_extend = 256

 # Configuration option global/thin_check_executable.
 # The full path to the thin_check command.
 # LVM uses this command to check that a thin metadata device is in a
 # usable state. When a thin pool is activated and after it is
 # deactivated, this command is run. Activation will only proceed if
 # the command has an exit status of 0. Set to "" to skip this check.
 # (Not recommended.) Also see thin_check_options.

Appendix B. T he LVM Configurat ion Files

153

 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # thin_check_executable = "/usr/sbin/thin_check"

 # Configuration option global/thin_dump_executable.
 # The full path to the thin_dump command.
 # LVM uses this command to dump thin pool metadata.
 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # thin_dump_executable = "/usr/sbin/thin_dump"

 # Configuration option global/thin_repair_executable.
 # The full path to the thin_repair command.
 # LVM uses this command to repair a thin metadata device if it is in
 # an unusable state. Also see thin_repair_options.
 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # thin_repair_executable = "/usr/sbin/thin_repair"

 # Configuration option global/thin_check_options.
 # List of options passed to the thin_check command.
 # With thin_check version 2.1 or newer you can add the option
 # --ignore-non-fatal-errors to let it pass through ignorable errors
 # and fix them later. With thin_check version 3.2 or newer you should
 # include the option --clear-needs-check-flag.
 # This configuration option has an automatic default value.
 # thin_check_options = ["-q", "--clear-needs-check-flag"]

 # Configuration option global/thin_repair_options.
 # List of options passed to the thin_repair command.
 # This configuration option has an automatic default value.
 # thin_repair_options = [""]

 # Configuration option global/thin_disabled_features.
 # Features to not use in the thin driver.
 # This can be helpful for testing, or to avoid using a feature that is
 # causing problems. Features include: block_size, discards,
 # discards_non_power_2, external_origin, metadata_resize,
 # external_origin_extend, error_if_no_space.
 #
 # Example
 # thin_disabled_features = ["discards", "block_size"]
 #
 # This configuration option does not have a default value defined.

 # Configuration option global/cache_disabled_features.
 # Features to not use in the cache driver.
 # This can be helpful for testing, or to avoid using a feature that is
 # causing problems. Features include: policy_mq, policy_smq.
 #
 # Example
 # cache_disabled_features = ["policy_smq"]
 #
 # This configuration option does not have a default value defined.

 # Configuration option global/cache_check_executable.

Logical Volume Manager Administ rat ion

154

 # The full path to the cache_check command.
 # LVM uses this command to check that a cache metadata device is in a
 # usable state. When a cached LV is activated and after it is
 # deactivated, this command is run. Activation will only proceed if the
 # command has an exit status of 0. Set to "" to skip this check.
 # (Not recommended.) Also see cache_check_options.
 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # cache_check_executable = "/usr/sbin/cache_check"

 # Configuration option global/cache_dump_executable.
 # The full path to the cache_dump command.
 # LVM uses this command to dump cache pool metadata.
 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # cache_dump_executable = "/usr/sbin/cache_dump"

 # Configuration option global/cache_repair_executable.
 # The full path to the cache_repair command.
 # LVM uses this command to repair a cache metadata device if it is in
 # an unusable state. Also see cache_repair_options.
 # (See package device-mapper-persistent-data or thin-provisioning-tools)
 # This configuration option has an automatic default value.
 # cache_repair_executable = "/usr/sbin/cache_repair"

 # Configuration option global/cache_check_options.
 # List of options passed to the cache_check command.
 # With cache_check version 5.0 or newer you should include the option
 # --clear-needs-check-flag.
 # This configuration option has an automatic default value.
 # cache_check_options = ["-q", "--clear-needs-check-flag"]

 # Configuration option global/cache_repair_options.
 # List of options passed to the cache_repair command.
 # This configuration option has an automatic default value.
 # cache_repair_options = [""]

 # Configuration option global/system_id_source.
 # The method LVM uses to set the local system ID.
 # Volume Groups can also be given a system ID (by vgcreate, vgchange,
 # or vgimport.) A VG on shared storage devices is accessible only to
 # the host with a matching system ID. See 'man lvmsystemid' for
 # information on limitations and correct usage.
 #
 # Accepted values:
 # none
 # The host has no system ID.
 # lvmlocal
 # Obtain the system ID from the system_id setting in the 'local'
 # section of an lvm configuration file, e.g. lvmlocal.conf.
 # uname
 # Set the system ID from the hostname (uname) of the system.
 # System IDs beginning localhost are not permitted.
 # machineid
 # Use the contents of the machine-id file to set the system ID.
 # Some systems create this file at installation time.

Appendix B. T he LVM Configurat ion Files

155

 # See 'man machine-id' and global/etc.
 # file
 # Use the contents of another file (system_id_file) to set the
 # system ID.
 #
 system_id_source = "none"

 # Configuration option global/system_id_file.
 # The full path to the file containing a system ID.
 # This is used when system_id_source is set to 'file'.
 # Comments starting with the character # are ignored.
 # This configuration option does not have a default value defined.

 # Configuration option global/use_lvmpolld.
 # Use lvmpolld to supervise long running LVM commands.
 # When enabled, control of long running LVM commands is transferred
 # from the original LVM command to the lvmpolld daemon. This allows
 # the operation to continue independent of the original LVM command.
 # After lvmpolld takes over, the LVM command displays the progress
 # of the ongoing operation. lvmpolld itself runs LVM commands to
 # manage the progress of ongoing operations. lvmpolld can be used as
 # a native systemd service, which allows it to be started on demand,
 # and to use its own control group. When this option is disabled, LVM
 # commands will supervise long running operations by forking themselves.
 # Applicable only if LVM is compiled with lvmpolld support.
 use_lvmpolld = 1

 # Configuration option global/notify_dbus.
 # Enable D-Bus notification from LVM commands.
 # When enabled, an LVM command that changes PVs, changes VG metadata,
 # or changes the activation state of an LV will send a notification.
 notify_dbus = 1
}

Configuration section activation.
activation {

 # Configuration option activation/checks.
 # Perform internal checks of libdevmapper operations.
 # Useful for debugging problems with activation. Some of the checks may
 # be expensive, so it's best to use this only when there seems to be a
 # problem.
 checks = 0

 # Configuration option activation/udev_sync.
 # Use udev notifications to synchronize udev and LVM.
 # The --nodevsync option overrides this setting.
 # When disabled, LVM commands will not wait for notifications from
 # udev, but continue irrespective of any possible udev processing in
 # the background. Only use this if udev is not running or has rules
 # that ignore the devices LVM creates. If enabled when udev is not
 # running, and LVM processes are waiting for udev, run the command
 # 'dmsetup udevcomplete_all' to wake them up.
 udev_sync = 1

 # Configuration option activation/udev_rules.

Logical Volume Manager Administ rat ion

156

 # Use udev rules to manage LV device nodes and symlinks.
 # When disabled, LVM will manage the device nodes and symlinks for
 # active LVs itself. Manual intervention may be required if this
 # setting is changed while LVs are active.
 udev_rules = 1

 # Configuration option activation/verify_udev_operations.
 # Use extra checks in LVM to verify udev operations.
 # This enables additional checks (and if necessary, repairs) on entries
 # in the device directory after udev has completed processing its
 # events. Useful for diagnosing problems with LVM/udev interactions.
 verify_udev_operations = 0

 # Configuration option activation/retry_deactivation.
 # Retry failed LV deactivation.
 # If LV deactivation fails, LVM will retry for a few seconds before
 # failing. This may happen because a process run from a quick udev rule
 # temporarily opened the device.
 retry_deactivation = 1

 # Configuration option activation/missing_stripe_filler.
 # Method to fill missing stripes when activating an incomplete LV.
 # Using 'error' will make inaccessible parts of the device return I/O
 # errors on access. You can instead use a device path, in which case,
 # that device will be used in place of missing stripes. Using anything
 # other than 'error' with mirrored or snapshotted volumes is likely to
 # result in data corruption.
 # This configuration option is advanced.
 missing_stripe_filler = "error"

 # Configuration option activation/use_linear_target.
 # Use the linear target to optimize single stripe LVs.
 # When disabled, the striped target is used. The linear target is an
 # optimised version of the striped target that only handles a single
 # stripe.
 use_linear_target = 1

 # Configuration option activation/reserved_stack.
 # Stack size in KiB to reserve for use while devices are suspended.
 # Insufficent reserve risks I/O deadlock during device suspension.
 reserved_stack = 64

 # Configuration option activation/reserved_memory.
 # Memory size in KiB to reserve for use while devices are suspended.
 # Insufficent reserve risks I/O deadlock during device suspension.
 reserved_memory = 8192

 # Configuration option activation/process_priority.
 # Nice value used while devices are suspended.
 # Use a high priority so that LVs are suspended
 # for the shortest possible time.
 process_priority = -18

 # Configuration option activation/volume_list.
 # Only LVs selected by this list are activated.
 # If this list is defined, an LV is only activated if it matches an

Appendix B. T he LVM Configurat ion Files

157

 # entry in this list. If this list is undefined, it imposes no limits
 # on LV activation (all are allowed).
 #
 # Accepted values:
 # vgname
 # The VG name is matched exactly and selects all LVs in the VG.
 # vgname/lvname
 # The VG name and LV name are matched exactly and selects the LV.
 # @tag
 # Selects an LV if the specified tag matches a tag set on the LV
 # or VG.
 # @*
 # Selects an LV if a tag defined on the host is also set on the LV
 # or VG. See tags/hosttags. If any host tags exist but volume_list
 # is not defined, a default single-entry list containing '@*'
 # is assumed.
 #
 # Example
 # volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]
 #
 # This configuration option does not have a default value defined.

 # Configuration option activation/auto_activation_volume_list.
 # Only LVs selected by this list are auto-activated.
 # This list works like volume_list, but it is used only by
 # auto-activation commands. It does not apply to direct activation
 # commands. If this list is defined, an LV is only auto-activated
 # if it matches an entry in this list. If this list is undefined, it
 # imposes no limits on LV auto-activation (all are allowed.) If this
 # list is defined and empty, i.e. "[]", then no LVs are selected for
 # auto-activation. An LV that is selected by this list for
 # auto-activation, must also be selected by volume_list (if defined)
 # before it is activated. Auto-activation is an activation command that
 # includes the 'a' argument: --activate ay or -a ay. The 'a' (auto)
 # argument for auto-activation is meant to be used by activation
 # commands that are run automatically by the system, as opposed to LVM
 # commands run directly by a user. A user may also use the 'a' flag
 # directly to perform auto-activation. Also see pvscan(8) for more
 # information about auto-activation.
 #
 # Accepted values:
 # vgname
 # The VG name is matched exactly and selects all LVs in the VG.
 # vgname/lvname
 # The VG name and LV name are matched exactly and selects the LV.
 # @tag
 # Selects an LV if the specified tag matches a tag set on the LV
 # or VG.
 # @*
 # Selects an LV if a tag defined on the host is also set on the LV
 # or VG. See tags/hosttags. If any host tags exist but volume_list
 # is not defined, a default single-entry list containing '@*'
 # is assumed.
 #
 # Example
 # auto_activation_volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]

Logical Volume Manager Administ rat ion

158

 #
 # This configuration option does not have a default value defined.

 # Configuration option activation/read_only_volume_list.
 # LVs in this list are activated in read-only mode.
 # If this list is defined, each LV that is to be activated is checked
 # against this list, and if it matches, it is activated in read-only
 # mode. This overrides the permission setting stored in the metadata,
 # e.g. from --permission rw.
 #
 # Accepted values:
 # vgname
 # The VG name is matched exactly and selects all LVs in the VG.
 # vgname/lvname
 # The VG name and LV name are matched exactly and selects the LV.
 # @tag
 # Selects an LV if the specified tag matches a tag set on the LV
 # or VG.
 # @*
 # Selects an LV if a tag defined on the host is also set on the LV
 # or VG. See tags/hosttags. If any host tags exist but volume_list
 # is not defined, a default single-entry list containing '@*'
 # is assumed.
 #
 # Example
 # read_only_volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]
 #
 # This configuration option does not have a default value defined.

 # Configuration option activation/raid_region_size.
 # Size in KiB of each raid or mirror synchronization region.
 # For raid or mirror segment types, this is the amount of data that is
 # copied at once when initializing, or moved at once by pvmove.
 raid_region_size = 512

 # Configuration option activation/error_when_full.
 # Return errors if a thin pool runs out of space.
 # The --errorwhenfull option overrides this setting.
 # When enabled, writes to thin LVs immediately return an error if the
 # thin pool is out of data space. When disabled, writes to thin LVs
 # are queued if the thin pool is out of space, and processed when the
 # thin pool data space is extended. New thin pools are assigned the
 # behavior defined here.
 # This configuration option has an automatic default value.
 # error_when_full = 0

 # Configuration option activation/readahead.
 # Setting to use when there is no readahead setting in metadata.
 #
 # Accepted values:
 # none
 # Disable readahead.
 # auto
 # Use default value chosen by kernel.
 #
 readahead = "auto"

Appendix B. T he LVM Configurat ion Files

159

 # Configuration option activation/raid_fault_policy.
 # Defines how a device failure in a RAID LV is handled.
 # This includes LVs that have the following segment types:
 # raid1, raid4, raid5*, and raid6*.
 # If a device in the LV fails, the policy determines the steps
 # performed by dmeventd automatically, and the steps perfomed by the
 # manual command lvconvert --repair --use-policies.
 # Automatic handling requires dmeventd to be monitoring the LV.
 #
 # Accepted values:
 # warn
 # Use the system log to warn the user that a device in the RAID LV
 # has failed. It is left to the user to run lvconvert --repair
 # manually to remove or replace the failed device. As long as the
 # number of failed devices does not exceed the redundancy of the LV
 # (1 device for raid4/5, 2 for raid6), the LV will remain usable.
 # allocate
 # Attempt to use any extra physical volumes in the VG as spares and
 # replace faulty devices.
 #
 raid_fault_policy = "warn"

 # Configuration option activation/mirror_image_fault_policy.
 # Defines how a device failure in a 'mirror' LV is handled.
 # An LV with the 'mirror' segment type is composed of mirror images
 # (copies) and a mirror log. A disk log ensures that a mirror LV does
 # not need to be re-synced (all copies made the same) every time a
 # machine reboots or crashes. If a device in the LV fails, this policy
 # determines the steps perfomed by dmeventd automatically, and the steps
 # performed by the manual command lvconvert --repair --use-policies.
 # Automatic handling requires dmeventd to be monitoring the LV.
 #
 # Accepted values:
 # remove
 # Simply remove the faulty device and run without it. If the log
 # device fails, the mirror would convert to using an in-memory log.
 # This means the mirror will not remember its sync status across
 # crashes/reboots and the entire mirror will be re-synced. If a
 # mirror image fails, the mirror will convert to a non-mirrored
 # device if there is only one remaining good copy.
 # allocate
 # Remove the faulty device and try to allocate space on a new
 # device to be a replacement for the failed device. Using this
 # policy for the log is fast and maintains the ability to remember
 # sync state through crashes/reboots. Using this policy for a
 # mirror device is slow, as it requires the mirror to resynchronize
 # the devices, but it will preserve the mirror characteristic of
 # the device. This policy acts like 'remove' if no suitable device
 # and space can be allocated for the replacement.
 # allocate_anywhere
 # Not yet implemented. Useful to place the log device temporarily
 # on the same physical volume as one of the mirror images. This
 # policy is not recommended for mirror devices since it would break
 # the redundant nature of the mirror. This policy acts like
 # 'remove' if no suitable device and space can be allocated for the

Logical Volume Manager Administ rat ion

160

 # replacement.
 #
 mirror_image_fault_policy = "remove"

 # Configuration option activation/mirror_log_fault_policy.
 # Defines how a device failure in a 'mirror' log LV is handled.
 # The mirror_image_fault_policy description for mirrored LVs also
 # applies to mirrored log LVs.
 mirror_log_fault_policy = "allocate"

 # Configuration option activation/snapshot_autoextend_threshold.
 # Auto-extend a snapshot when its usage exceeds this percent.
 # Setting this to 100 disables automatic extension.
 # The minimum value is 50 (a smaller value is treated as 50.)
 # Also see snapshot_autoextend_percent.
 # Automatic extension requires dmeventd to be monitoring the LV.
 #
 # Example
 # Using 70% autoextend threshold and 20% autoextend size, when a 1G
 # snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
 # 840M, it is extended to 1.44G:
 # snapshot_autoextend_threshold = 70
 #
 snapshot_autoextend_threshold = 100

 # Configuration option activation/snapshot_autoextend_percent.
 # Auto-extending a snapshot adds this percent extra space.
 # The amount of additional space added to a snapshot is this
 # percent of its current size.
 #
 # Example
 # Using 70% autoextend threshold and 20% autoextend size, when a 1G
 # snapshot exceeds 700M, it is extended to 1.2G, and when it exceeds
 # 840M, it is extended to 1.44G:
 # snapshot_autoextend_percent = 20
 #
 snapshot_autoextend_percent = 20

 # Configuration option activation/thin_pool_autoextend_threshold.
 # Auto-extend a thin pool when its usage exceeds this percent.
 # Setting this to 100 disables automatic extension.
 # The minimum value is 50 (a smaller value is treated as 50.)
 # Also see thin_pool_autoextend_percent.
 # Automatic extension requires dmeventd to be monitoring the LV.
 #
 # Example
 # Using 70% autoextend threshold and 20% autoextend size, when a 1G
 # thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
 # 840M, it is extended to 1.44G:
 # thin_pool_autoextend_threshold = 70
 #
 thin_pool_autoextend_threshold = 100

 # Configuration option activation/thin_pool_autoextend_percent.
 # Auto-extending a thin pool adds this percent extra space.
 # The amount of additional space added to a thin pool is this

Appendix B. T he LVM Configurat ion Files

161

 # percent of its current size.
 #
 # Example
 # Using 70% autoextend threshold and 20% autoextend size, when a 1G
 # thin pool exceeds 700M, it is extended to 1.2G, and when it exceeds
 # 840M, it is extended to 1.44G:
 # thin_pool_autoextend_percent = 20
 #
 thin_pool_autoextend_percent = 20

 # Configuration option activation/mlock_filter.
 # Do not mlock these memory areas.
 # While activating devices, I/O to devices being (re)configured is
 # suspended. As a precaution against deadlocks, LVM pins memory it is
 # using so it is not paged out, and will not require I/O to reread.
 # Groups of pages that are known not to be accessed during activation
 # do not need to be pinned into memory. Each string listed in this
 # setting is compared against each line in /proc/self/maps, and the
 # pages corresponding to lines that match are not pinned. On some
 # systems, locale-archive was found to make up over 80% of the memory
 # used by the process.
 #
 # Example
 # mlock_filter = ["locale/locale-archive", "gconv/gconv-modules.cache"
]
 #
 # This configuration option is advanced.
 # This configuration option does not have a default value defined.

 # Configuration option activation/use_mlockall.
 # Use the old behavior of mlockall to pin all memory.
 # Prior to version 2.02.62, LVM used mlockall() to pin the whole
 # process's memory while activating devices.
 use_mlockall = 0

 # Configuration option activation/monitoring.
 # Monitor LVs that are activated.
 # The --ignoremonitoring option overrides this setting.
 # When enabled, LVM will ask dmeventd to monitor activated LVs.
 monitoring = 1

 # Configuration option activation/polling_interval.
 # Check pvmove or lvconvert progress at this interval (seconds).
 # When pvmove or lvconvert must wait for the kernel to finish
 # synchronising or merging data, they check and report progress at
 # intervals of this number of seconds. If this is set to 0 and there
 # is only one thing to wait for, there are no progress reports, but
 # the process is awoken immediately once the operation is complete.
 polling_interval = 15

 # Configuration option activation/auto_set_activation_skip.
 # Set the activation skip flag on new thin snapshot LVs.
 # The --setactivationskip option overrides this setting.
 # An LV can have a persistent 'activation skip' flag. The flag causes
 # the LV to be skipped during normal activation. The lvchange/vgchange
 # -K option is required to activate LVs that have the activation skip

Logical Volume Manager Administ rat ion

162

 # flag set. When this setting is enabled, the activation skip flag is
 # set on new thin snapshot LVs.
 # This configuration option has an automatic default value.
 # auto_set_activation_skip = 1

 # Configuration option activation/activation_mode.
 # How LVs with missing devices are activated.
 # The --activationmode option overrides this setting.
 #
 # Accepted values:
 # complete
 # Only allow activation of an LV if all of the Physical Volumes it
 # uses are present. Other PVs in the Volume Group may be missing.
 # degraded
 # Like complete, but additionally RAID LVs of segment type raid1,
 # raid4, raid5, radid6 and raid10 will be activated if there is no
 # data loss, i.e. they have sufficient redundancy to present the
 # entire addressable range of the Logical Volume.
 # partial
 # Allows the activation of any LV even if a missing or failed PV
 # could cause data loss with a portion of the LV inaccessible.
 # This setting should not normally be used, but may sometimes
 # assist with data recovery.
 #
 activation_mode = "degraded"

 # Configuration option activation/lock_start_list.
 # Locking is started only for VGs selected by this list.
 # The rules are the same as those for volume_list.
 # This configuration option does not have a default value defined.

 # Configuration option activation/auto_lock_start_list.
 # Locking is auto-started only for VGs selected by this list.
 # The rules are the same as those for auto_activation_volume_list.
 # This configuration option does not have a default value defined.
}

Configuration section metadata.
This configuration section has an automatic default value.
metadata {

 # Configuration option metadata/check_pv_device_sizes.
 # Check device sizes are not smaller than corresponding PV sizes.
 # If device size is less than corresponding PV size found in metadata,
 # there is always a risk of data loss. If this option is set, then LVM
 # issues a warning message each time it finds that the device size is
 # less than corresponding PV size. You should not disable this unless
 # you are absolutely sure about what you are doing!
 # This configuration option is advanced.
 # This configuration option has an automatic default value.
 # check_pv_device_sizes = 1

 # Configuration option metadata/record_lvs_history.
 # When enabled, LVM keeps history records about removed LVs in
 # metadata. The information that is recorded in metadata for
 # historical LVs is reduced when compared to original

Appendix B. T he LVM Configurat ion Files

163

 # information kept in metadata for live LVs. Currently, this
 # feature is supported for thin and thin snapshot LVs only.
 # This configuration option has an automatic default value.
 # record_lvs_history = 0

 # Configuration option metadata/lvs_history_retention_time.
 # Retention time in seconds after which a record about individual
 # historical logical volume is automatically destroyed.
 # A value of 0 disables this feature.
 # This configuration option has an automatic default value.
 # lvs_history_retention_time = 0

 # Configuration option metadata/pvmetadatacopies.
 # Number of copies of metadata to store on each PV.
 # The --pvmetadatacopies option overrides this setting.
 #
 # Accepted values:
 # 2
 # Two copies of the VG metadata are stored on the PV, one at the
 # front of the PV, and one at the end.
 # 1
 # One copy of VG metadata is stored at the front of the PV.
 # 0
 # No copies of VG metadata are stored on the PV. This may be
 # useful for VGs containing large numbers of PVs.
 #
 # This configuration option is advanced.
 # This configuration option has an automatic default value.
 # pvmetadatacopies = 1

 # Configuration option metadata/vgmetadatacopies.
 # Number of copies of metadata to maintain for each VG.
 # The --vgmetadatacopies option overrides this setting.
 # If set to a non-zero value, LVM automatically chooses which of the
 # available metadata areas to use to achieve the requested number of
 # copies of the VG metadata. If you set a value larger than the the
 # total number of metadata areas available, then metadata is stored in
 # them all. The value 0 (unmanaged) disables this automatic management
 # and allows you to control which metadata areas are used at the
 # individual PV level using pvchange --metadataignore y|n.
 # This configuration option has an automatic default value.
 # vgmetadatacopies = 0

 # Configuration option metadata/pvmetadatasize.
 # Approximate number of sectors to use for each metadata copy.
 # VGs with large numbers of PVs or LVs, or VGs containing complex LV
 # structures, may need additional space for VG metadata. The metadata
 # areas are treated as circular buffers, so unused space becomes filled
 # with an archive of the most recent previous versions of the metadata.
 # This configuration option has an automatic default value.
 # pvmetadatasize = 255

 # Configuration option metadata/pvmetadataignore.
 # Ignore metadata areas on a new PV.
 # The --metadataignore option overrides this setting.
 # If metadata areas on a PV are ignored, LVM will not store metadata

Logical Volume Manager Administ rat ion

164

 # in them.
 # This configuration option is advanced.
 # This configuration option has an automatic default value.
 # pvmetadataignore = 0

 # Configuration option metadata/stripesize.
 # This configuration option is advanced.
 # This configuration option has an automatic default value.
 # stripesize = 64

 # Configuration option metadata/dirs.
 # Directories holding live copies of text format metadata.
 # These directories must not be on logical volumes!
 # It's possible to use LVM with a couple of directories here,
 # preferably on different (non-LV) filesystems, and with no other
 # on-disk metadata (pvmetadatacopies = 0). Or this can be in addition
 # to on-disk metadata areas. The feature was originally added to
 # simplify testing and is not supported under low memory situations -
 # the machine could lock up. Never edit any files in these directories
 # by hand unless you are absolutely sure you know what you are doing!
 # Use the supplied toolset to make changes (e.g. vgcfgrestore).
 #
 # Example
 # dirs = ["/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2"]
 #
 # This configuration option is advanced.
 # This configuration option does not have a default value defined.
}

Configuration section report.
LVM report command output formatting.
This configuration section has an automatic default value.
report {

 # Configuration option report/output_format.
 # Format of LVM command's report output.
 # If there is more than one report per command, then the format
 # is applied for all reports. You can also change output format
 # directly on command line using --reportformat option which
 # has precedence over log/output_format setting.
 # Accepted values:
 # basic
 # Original format with columns and rows. If there is more than
 # one report per command, each report is prefixed with report's
 # name for identification.
 # json
 # JSON format.
 # This configuration option has an automatic default value.
 # output_format = "basic"

 # Configuration option report/compact_output.
 # Do not print empty values for all report fields.
 # If enabled, all fields that don't have a value set for any of the
 # rows reported are skipped and not printed. Compact output is
 # applicable only if report/buffered is enabled. If you need to
 # compact only specified fields, use compact_output=0 and define

Appendix B. T he LVM Configurat ion Files

165

 # report/compact_output_cols configuration setting instead.
 # This configuration option has an automatic default value.
 # compact_output = 0

 # Configuration option report/compact_output_cols.
 # Do not print empty values for specified report fields.
 # If defined, specified fields that don't have a value set for any
 # of the rows reported are skipped and not printed. Compact output
 # is applicable only if report/buffered is enabled. If you need to
 # compact all fields, use compact_output=1 instead in which case
 # the compact_output_cols setting is then ignored.
 # This configuration option has an automatic default value.
 # compact_output_cols = ""

 # Configuration option report/aligned.
 # Align columns in report output.
 # This configuration option has an automatic default value.
 # aligned = 1

 # Configuration option report/buffered.
 # Buffer report output.
 # When buffered reporting is used, the report's content is appended
 # incrementally to include each object being reported until the report
 # is flushed to output which normally happens at the end of command
 # execution. Otherwise, if buffering is not used, each object is
 # reported as soon as its processing is finished.
 # This configuration option has an automatic default value.
 # buffered = 1

 # Configuration option report/headings.
 # Show headings for columns on report.
 # This configuration option has an automatic default value.
 # headings = 1

 # Configuration option report/separator.
 # A separator to use on report after each field.
 # This configuration option has an automatic default value.
 # separator = " "

 # Configuration option report/list_item_separator.
 # A separator to use for list items when reported.
 # This configuration option has an automatic default value.
 # list_item_separator = ","

 # Configuration option report/prefixes.
 # Use a field name prefix for each field reported.
 # This configuration option has an automatic default value.
 # prefixes = 0

 # Configuration option report/quoted.
 # Quote field values when using field name prefixes.
 # This configuration option has an automatic default value.
 # quoted = 1

 # Configuration option report/colums_as_rows.
 # Output each column as a row.

Logical Volume Manager Administ rat ion

166

 # If set, this also implies report/prefixes=1.
 # This configuration option has an automatic default value.
 # colums_as_rows = 0

 # Configuration option report/binary_values_as_numeric.
 # Use binary values 0 or 1 instead of descriptive literal values.
 # For columns that have exactly two valid values to report
 # (not counting the 'unknown' value which denotes that the
 # value could not be determined).
 # This configuration option has an automatic default value.
 # binary_values_as_numeric = 0

 # Configuration option report/time_format.
 # Set time format for fields reporting time values.
 # Format specification is a string which may contain special character
 # sequences and ordinary character sequences. Ordinary character
 # sequences are copied verbatim. Each special character sequence is
 # introduced by the '%' character and such sequence is then
 # substituted with a value as described below.
 #
 # Accepted values:
 # %a
 # The abbreviated name of the day of the week according to the
 # current locale.
 # %A
 # The full name of the day of the week according to the current
 # locale.
 # %b
 # The abbreviated month name according to the current locale.
 # %B
 # The full month name according to the current locale.
 # %c
 # The preferred date and time representation for the current
 # locale (alt E)
 # %C
 # The century number (year/100) as a 2-digit integer. (alt E)
 # %d
 # The day of the month as a decimal number (range 01 to 31).
 # (alt O)
 # %D
 # Equivalent to %m/%d/%y. (For Americans only. Americans should
 # note that in other countries%d/%m/%y is rather common. This
 # means that in international context this format is ambiguous and
 # should not be used.
 # %e
 # Like %d, the day of the month as a decimal number, but a leading
 # zero is replaced by a space. (alt O)
 # %E
 # Modifier: use alternative local-dependent representation if
 # available.
 # %F
 # Equivalent to %Y-%m-%d (the ISO 8601 date format).
 # %G
 # The ISO 8601 week-based year with century as adecimal number.
 # The 4-digit year corresponding to the ISO week number (see %V).
 # This has the same format and value as %Y, except that if the

Appendix B. T he LVM Configurat ion Files

167

 # ISO week number belongs to the previous or next year, that year
 # is used instead.
 # %g
 # Like %G, but without century, that is, with a 2-digit year
 # (00-99).
 # %h
 # Equivalent to %b.
 # %H
 # The hour as a decimal number using a 24-hour clock
 # (range 00 to 23). (alt O)
 # %I
 # The hour as a decimal number using a 12-hour clock
 # (range 01 to 12). (alt O)
 # %j
 # The day of the year as a decimal number (range 001 to 366).
 # %k
 # The hour (24-hour clock) as a decimal number (range 0 to 23);
 # single digits are preceded by a blank. (See also %H.)
 # %l
 # The hour (12-hour clock) as a decimal number (range 1 to 12);
 # single digits are preceded by a blank. (See also %I.)
 # %m
 # The month as a decimal number (range 01 to 12). (alt O)
 # %M
 # The minute as a decimal number (range 00 to 59). (alt O)
 # %O
 # Modifier: use alternative numeric symbols.
 # %p
 # Either "AM" or "PM" according to the given time value,
 # or the corresponding strings for the current locale. Noon is
 # treated as "PM" and midnight as "AM".
 # %P
 # Like %p but in lowercase: "am" or "pm" or a corresponding
 # string for the current locale.
 # %r
 # The time in a.m. or p.m. notation. In the POSIX locale this is
 # equivalent to %I:%M:%S %p.
 # %R
 # The time in 24-hour notation (%H:%M). For a version including
 # the seconds, see %T below.
 # %s
 # The number of seconds since the Epoch,
 # 1970-01-01 00:00:00 +0000 (UTC)
 # %S
 # The second as a decimal number (range 00 to 60). (The range is
 # up to 60 to allow for occasional leap seconds.) (alt O)
 # %t
 # A tab character.
 # %T
 # The time in 24-hour notation (%H:%M:%S).
 # %u
 # The day of the week as a decimal, range 1 to 7, Monday being 1.
 # See also %w. (alt O)
 # %U
 # The week number of the current year as a decimal number,
 # range 00 to 53, starting with the first Sunday as the first

Logical Volume Manager Administ rat ion

168

 # day of week 01. See also %V and %W. (alt O)
 # %V
 # The ISO 8601 week number of the current year as a decimal number,
 # range 01 to 53, where week 1 is the first week that has at least
 # 4 days in the new year. See also %U and %W. (alt O)
 # %w
 # The day of the week as a decimal, range 0 to 6, Sunday being 0.
 # See also %u. (alt O)
 # %W
 # The week number of the current year as a decimal number,
 # range 00 to 53, starting with the first Monday as the first day
 # of week 01. (alt O)
 # %x
 # The preferred date representation for the current locale without
 # the time. (alt E)
 # %X
 # The preferred time representation for the current locale without
 # the date. (alt E)
 # %y
 # The year as a decimal number without a century (range 00 to 99).
 # (alt E, alt O)
 # %Y
 # The year as a decimal number including the century. (alt E)
 # %z
 # The +hhmm or -hhmm numeric timezone (that is, the hour and minute
 # offset from UTC).
 # %Z
 # The timezone name or abbreviation.
 # %%
 # A literal '%' character.
 #
 # This configuration option has an automatic default value.
 # time_format = "%Y-%m-%d %T %z"

 # Configuration option report/devtypes_sort.
 # List of columns to sort by when reporting 'lvm devtypes' command.
 # See 'lvm devtypes -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # devtypes_sort = "devtype_name"

 # Configuration option report/devtypes_cols.
 # List of columns to report for 'lvm devtypes' command.
 # See 'lvm devtypes -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # devtypes_cols =
"devtype_name,devtype_max_partitions,devtype_description"

 # Configuration option report/devtypes_cols_verbose.
 # List of columns to report for 'lvm devtypes' command in verbose mode.
 # See 'lvm devtypes -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # devtypes_cols_verbose =
"devtype_name,devtype_max_partitions,devtype_description"

 # Configuration option report/lvs_sort.
 # List of columns to sort by when reporting 'lvs' command.

Appendix B. T he LVM Configurat ion Files

169

 # See 'lvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # lvs_sort = "vg_name,lv_name"

 # Configuration option report/lvs_cols.
 # List of columns to report for 'lvs' command.
 # See 'lvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # lvs_cols =
"lv_name,vg_name,lv_attr,lv_size,pool_lv,origin,data_percent,metadata_pe
rcent,move_pv,mirror_log,copy_percent,convert_lv"

 # Configuration option report/lvs_cols_verbose.
 # List of columns to report for 'lvs' command in verbose mode.
 # See 'lvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # lvs_cols_verbose =
"lv_name,vg_name,seg_count,lv_attr,lv_size,lv_major,lv_minor,lv_kernel_m
ajor,lv_kernel_minor,pool_lv,origin,data_percent,metadata_percent,move_p
v,copy_percent,mirror_log,convert_lv,lv_uuid,lv_profile"

 # Configuration option report/vgs_sort.
 # List of columns to sort by when reporting 'vgs' command.
 # See 'vgs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # vgs_sort = "vg_name"

 # Configuration option report/vgs_cols.
 # List of columns to report for 'vgs' command.
 # See 'vgs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # vgs_cols =
"vg_name,pv_count,lv_count,snap_count,vg_attr,vg_size,vg_free"

 # Configuration option report/vgs_cols_verbose.
 # List of columns to report for 'vgs' command in verbose mode.
 # See 'vgs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # vgs_cols_verbose =
"vg_name,vg_attr,vg_extent_size,pv_count,lv_count,snap_count,vg_size,vg_f
ree,vg_uuid,vg_profile"

 # Configuration option report/pvs_sort.
 # List of columns to sort by when reporting 'pvs' command.
 # See 'pvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvs_sort = "pv_name"

 # Configuration option report/pvs_cols.
 # List of columns to report for 'pvs' command.
 # See 'pvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvs_cols = "pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free"

 # Configuration option report/pvs_cols_verbose.
 # List of columns to report for 'pvs' command in verbose mode.

Logical Volume Manager Administ rat ion

170

 # See 'pvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvs_cols_verbose =
"pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,dev_size,pv_uuid"

 # Configuration option report/segs_sort.
 # List of columns to sort by when reporting 'lvs --segments' command.
 # See 'lvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # segs_sort = "vg_name,lv_name,seg_start"

 # Configuration option report/segs_cols.
 # List of columns to report for 'lvs --segments' command.
 # See 'lvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # segs_cols = "lv_name,vg_name,lv_attr,stripes,segtype,seg_size"

 # Configuration option report/segs_cols_verbose.
 # List of columns to report for 'lvs --segments' command in verbose
mode.
 # See 'lvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # segs_cols_verbose =
"lv_name,vg_name,lv_attr,seg_start,seg_size,stripes,segtype,stripesize,ch
unksize"

 # Configuration option report/pvsegs_sort.
 # List of columns to sort by when reporting 'pvs --segments' command.
 # See 'pvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvsegs_sort = "pv_name,pvseg_start"

 # Configuration option report/pvsegs_cols.
 # List of columns to sort by when reporting 'pvs --segments' command.
 # See 'pvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvsegs_cols =
"pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size"

 # Configuration option report/pvsegs_cols_verbose.
 # List of columns to sort by when reporting 'pvs --segments' command in
verbose mode.
 # See 'pvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvsegs_cols_verbose =
"pv_name,vg_name,pv_fmt,pv_attr,pv_size,pv_free,pvseg_start,pvseg_size,lv
_name,seg_start_pe,segtype,seg_pe_ranges"

 # Configuration option report/vgs_cols_full.
 # List of columns to report for lvm fullreport's 'vgs' subreport.
 # See 'vgs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # vgs_cols_full = "vg_all"

 # Configuration option report/pvs_cols_full.
 # List of columns to report for lvm fullreport's 'vgs' subreport.

Appendix B. T he LVM Configurat ion Files

171

 # See 'pvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvs_cols_full = "pv_all"

 # Configuration option report/lvs_cols_full.
 # List of columns to report for lvm fullreport's 'lvs' subreport.
 # See 'lvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # lvs_cols_full = "lv_all"

 # Configuration option report/pvsegs_cols_full.
 # List of columns to report for lvm fullreport's 'pvseg' subreport.
 # See 'pvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvsegs_cols_full = "pvseg_all,pv_uuid,lv_uuid"

 # Configuration option report/segs_cols_full.
 # List of columns to report for lvm fullreport's 'seg' subreport.
 # See 'lvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # segs_cols_full = "seg_all,lv_uuid"

 # Configuration option report/vgs_sort_full.
 # List of columns to sort by when reporting lvm fullreport's 'vgs'
subreport.
 # See 'vgs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # vgs_sort_full = "vg_name"

 # Configuration option report/pvs_sort_full.
 # List of columns to sort by when reporting lvm fullreport's 'vgs'
subreport.
 # See 'pvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvs_sort_full = "pv_name"

 # Configuration option report/lvs_sort_full.
 # List of columns to sort by when reporting lvm fullreport's 'lvs'
subreport.
 # See 'lvs -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # lvs_sort_full = "vg_name,lv_name"

 # Configuration option report/pvsegs_sort_full.
 # List of columns to sort by when reporting for lvm fullreport's 'pvseg'
subreport.
 # See 'pvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # pvsegs_sort_full = "pv_uuid,pvseg_start"

 # Configuration option report/segs_sort_full.
 # List of columns to sort by when reporting lvm fullreport's 'seg'
subreport.
 # See 'lvs --segments -o help' for the list of possible fields.
 # This configuration option has an automatic default value.
 # segs_sort_full = "lv_uuid,seg_start"

Logical Volume Manager Administ rat ion

172

 # Configuration option report/mark_hidden_devices.
 # Use brackets [] to mark hidden devices.
 # This configuration option has an automatic default value.
 # mark_hidden_devices = 1

 # Configuration option report/two_word_unknown_device.
 # Use the two words 'unknown device' in place of '[unknown]'.
 # This is displayed when the device for a PV is not known.
 # This configuration option has an automatic default value.
 # two_word_unknown_device = 0
}

Configuration section dmeventd.
Settings for the LVM event daemon.
dmeventd {

 # Configuration option dmeventd/mirror_library.
 # The library dmeventd uses when monitoring a mirror device.
 # libdevmapper-event-lvm2mirror.so attempts to recover from
 # failures. It removes failed devices from a volume group and
 # reconfigures a mirror as necessary. If no mirror library is
 # provided, mirrors are not monitored through dmeventd.
 mirror_library = "libdevmapper-event-lvm2mirror.so"

 # Configuration option dmeventd/raid_library.
 # This configuration option has an automatic default value.
 # raid_library = "libdevmapper-event-lvm2raid.so"

 # Configuration option dmeventd/snapshot_library.
 # The library dmeventd uses when monitoring a snapshot device.
 # libdevmapper-event-lvm2snapshot.so monitors the filling of snapshots
 # and emits a warning through syslog when the usage exceeds 80%. The
 # warning is repeated when 85%, 90% and 95% of the snapshot is filled.
 snapshot_library = "libdevmapper-event-lvm2snapshot.so"

 # Configuration option dmeventd/thin_library.
 # The library dmeventd uses when monitoring a thin device.
 # libdevmapper-event-lvm2thin.so monitors the filling of a pool
 # and emits a warning through syslog when the usage exceeds 80%. The
 # warning is repeated when 85%, 90% and 95% of the pool is filled.
 thin_library = "libdevmapper-event-lvm2thin.so"

 # Configuration option dmeventd/executable.
 # The full path to the dmeventd binary.
 # This configuration option has an automatic default value.
 # executable = "/usr/sbin/dmeventd"
}

Configuration section tags.
Host tag settings.
This configuration section has an automatic default value.
tags {

 # Configuration option tags/hosttags.
 # Create a host tag using the machine name.

Appendix B. T he LVM Configurat ion Files

173

 # The machine name is nodename returned by uname(2).
 # This configuration option has an automatic default value.
 # hosttags = 0

 # Configuration section tags/<tag>.
 # Replace this subsection name with a custom tag name.
 # Multiple subsections like this can be created. The '@' prefix for
 # tags is optional. This subsection can contain host_list, which is a
 # list of machine names. If the name of the local machine is found in
 # host_list, then the name of this subsection is used as a tag and is
 # applied to the local machine as a 'host tag'. If this subsection is
 # empty (has no host_list), then the subsection name is always applied
 # as a 'host tag'.
 #
 # Example
 # The host tag foo is given to all hosts, and the host tag
 # bar is given to the hosts named machine1 and machine2.
 # tags { foo { } bar { host_list = ["machine1", "machine2"] } }
 #
 # This configuration section has variable name.
 # This configuration section has an automatic default value.
 # tag {

 # Configuration option tags/<tag>/host_list.
 # A list of machine names.
 # These machine names are compared to the nodename returned
 # by uname(2). If the local machine name matches an entry in
 # this list, the name of the subsection is applied to the
 # machine as a 'host tag'.
 # This configuration option does not have a default value defined.
 # }
}

Logical Volume Manager Administ rat ion

174

Appendix C. LVM Selection Criteria

As of Red Hat Enterprise Linux release 7.1, many LVM reporting commands accept the -S or --
select option to define selection criteria for those commands. As of Red Hat Enterprise Linux
release 7.2, many processing commands support selection criteria as well. These two categories of
commands for which you can define selection criteria are defined as follows:

Reporting commands — Display only the lines that satisfy the selection criteria. Examples of
reporting commands for which you can define selection criteria include pvs, vgs, lvs,
pvdisplay, vgdisplay, lvdisplay, lvm devtypes, and dmsetup info -c.

Specifying the -o selected option in addition to the -S option displays all rows and adds a
"selected" column that shows 1 if the row matches the selection criteria and 0 if it does not.

Processing commands — Process only the items that satisfy the selection criteria. Examples of
processing commands for which you can define selection criteria include pvchange, vgchange,
lvchange, vgimport, vgexport, vgremove, and lvremove.

Selection criteria are a set of statements that use comparison operators to define the valid values for
particular fields to display or process. The selected fields are, in turn, combined by logical and
grouping operators.

When specifying which fields to display using selection criteria, there is no requirement for the field
which is in the selection criteria to be displayed. The selection criteria can contain one set of fields
while the output can contain a different set of fields.

For a listing of available fields for the various LVM components, see Section C.3, “Selection
Criteria Fields” .

For a listing of allowed operators, see Section C.2, “Selection Criteria Operators” . The operators
are also provided on the lvm(8) man page.

You can also see full sets of fields and possible operators by specifying the help (or ?) keyword
for the -S/--select option of a reporting commands. For example, the following command
displays the fields and possible operators for the lvs command.

lvs -S help

For the Red Hat Enterprise Linux 7.2 release, you can specify time values as selection criteria for
fields with a field type of time. For information on specifying time values, see Section C.4,
“Specifying Time Values” .

C.1. Select ion Crit eria Field Types

The fields you specify for selection criteria are of a particular type. The help output for each field
display the field type enclosed in brackets. The following help output examples show the output
indicating the field types string , string_list, number, percent, size and time.

lv_name - Name. LVs created for internal use are enclosed in
brackets.[string]
lv_role - LV role. [string list]
raid_mismatch_count - For RAID, number of mismatches found or repaired.
[number]

Appendix C. LVM Select ion Crit eria

175

copy_percent - For RAID, mirrors and pvmove, current percentage
in-sync. [percent]
lv_size - Size of LV in current units. [size]
lv_time - Creation time of the LV, if known [time]

Table C.1, “Selection Criteria Field Types” describes the selection criteria field types

Table C.1. Select ion Criteria Field Types

Field Type Descript ion
number Non-negative integer value.
size Floating point value with units, 'm' unit used by default if not specified.
percent Non-negative integer with or without % suffix.
string Characters quoted by ' or " or unquoted.
string list Strings enclosed by [] or { } and elements delimited by either "all items must

match" or "at least one item must match" operator.

The values you specify for a field can be the following:

Concrete values of the field type

Regular expressions that include any fields of the string field type, such as "+~" operator.

Reserved values; for example -1, unknown, undefined, undef are all keywords to denote an
undefined numeric value.

Defined synonyms for the field values, which can be used in selection criteria for values just as for
their original values. For a listing of defined synonyms for field values, see Table C.14, “Selection
Criteria Synonyms” .

C.2. Select ion Crit eria Operators

Table C.2, “Selection Criteria Grouping Operators” describes the selection criteria grouping
operators.

Table C.2. Select ion Criteria Grouping Operators

Grouping
Operator

Descript ion

() Used for grouping statements
[] Used to group strings into a string list (exact match)
{ } Used to group strings into a string list (subset match)

Table C.3, “Selection Criteria Comparison Operators” describes the selection criteria comparison
operators and the field types with which they can be used.

Table C.3. Select ion Criteria Comparison Operators

Compar
ison
Operat
or

Descript ion Field Type

=~ Matching regular expression regex

Logical Volume Manager Administ rat ion

176

!~ Not matching regular expression. regex
= Equal to number, size, percent, string, string list,

time
!= Not equal to number, size, percent, string, string list,

time
>= Greater than or equal to number, size, percent, time
> Greater than number, size, percent, time
<= Less than or equal to number, size, percent, time
< Less than number, size, percent, time
since Since specified time (same as >=) time
after After specified time (same as >) time
until Until specified time (same as <=) time
before Before specified time (same as <) time

Compar
ison
Operat
or

Descript ion Field Type

Table C.4, “Selection Criteria Logical and Grouping Operators” describes the selection criteria
logical and grouping operators.

Table C.4 . Select ion Criteria Logical and Grouping Operators

Logical and Grouping
Operator

Descript ion

&& All fields must match
, All fields must match (same as &&)
|| At least one field must match
At least one field must match (same as ||)
! Logical negation
(Left parenthesis (grouping operator)
) Right parenthesis (grouping operator)
[List start (grouping operator)
] List end (grouping operator)
{ List subset start (grouping operator)
} List subset end (grouping operator)

C.3. Select ion Crit eria Fields

This section describes the logical and physical volume selection criteria fields you can specify.

Table C.5, “Logical Volume Fields” describes the logical volume fields and their field types.

Table C.5. Logical Volume Fields

Logical Volume
Field

Descript ion Field Type

lv_uuid Unique identifier string
lv_name Name (logical volumes created for internal use

are enclosed in brackets)
string

Appendix C. LVM Select ion Crit eria

177

lv_full_name Full name of logical volume including its volume
group, namely VG/LV

string

lv_path Full pathname for logical volume (blank for
internal logical volumes)

string

lv_dm_path Internal device mapper pathname for logical
volume (in /dev/mapper directory)

string

lv_parent For logical volumes that are components of
another logical volume, the parent logical
volume

string

lv_layout logical volume layout string list
lv_role logical volume role string list
lv_initial_image
_sync

Set if mirror/RAID images underwent initial
resynchronization

number

lv_image_synced Set if mirror/RAID image is synchronized number
lv_merging Set if snapshot logical volume is being merged

to origin
number

lv_converting Set if logical volume is being converted number
lv_allocation_po
licy

logical volume allocation policy string

lv_allocation_lo
cked

Set if logical volume is locked against allocation
changes

number

lv_fixed_minor Set if logical volume has fixed minor number
assigned

number

lv_merge_failed Set if snapshot merge failed number
lv_snapshot_inval
id

Set if snapshot logical volume is invalid number

lv_skip_activatio
n

Set if logical volume is skipped on activation number

lv_when_full For thin pools, behavior when full string
lv_active Active state of the logical volume string
lv_active_locall
y

Set if the logical volume is active locally number

lv_active_remotel
y

Set if the logical volume is active remotely number

lv_active_exclusi
vely

Set if the logical volume is active exclusively number

lv_major Persistent major number or -1 if not persistent number
lv_minor Persistent minor number or -1 if not persistent number
lv_read_ahead Read ahead setting in current units size
lv_size Size of logical volume in current units size
lv_metadata_size For thin and cache pools, the size of the logical

volume that holds the metadata
size

seg_count Number of segments in logical volume number
origin For snapshots, the origin device of this logical

volume
string

origin_size For snapshots, the size of the origin device of
this logical volume

size

data_percent For snapshot and thin pools and volumes, the
percentage full if logical volume is active

percent

Logical Volume
Field

Descript ion Field Type

Logical Volume Manager Administ rat ion

178

snap_percent For snapshots, the percentage full if logical
volume is active

percent

metadata_percent For thin pools, the percentage of metadata full if
logical volume is active

percent

copy_percent For RAID, mirrors and pvmove, current
percentage in-sync

percent

sync_percent For RAID, mirrors and pvmove, current
percentage in-sync

percent

raid_mismatch_cou
nt

For RAID, number of mismatches found or
repaired

number

raid_sync_action For RAID, the current synchronization action
being performed

string

raid_write_behind For RAID1, the number of outstanding writes
allowed to writemostly devices

number

raid_min_recovery
_rate

For RAID1, the minimum recovery I/O load in
kiB/sec/disk

number

raid_max_recovery
_rate

For RAID1, the maximum recovery I/O load in
kiB/sec/disk

number

move_pv For pvmove, source physical volume of
temporary logical volume created by pvmove

string

convert_lv For lvconvert, name of temporary logical volume
created by lvconvert

string

mirror_log For mirrors, the logical volume holding the
synchronization log

string

data_lv For thin and cache pools, the logical volume
holding the associated data

string

metadata_lv For thin and cache pools, the logical volume
holding the associated metadata

string

pool_lv For thin volumes, the thin pool logical volume
for this volume

string

lv_tags Tags, if any string list
lv_profile Configuration profile attached to this logical

volume
string

lv_time Creation time of the logical volume, if known time
lv_host Creation host of the logical volume, if known string
lv_modules Kernel device-mapper modules required for this

logical volume
string list

Logical Volume
Field

Descript ion Field Type

Table C.6, “Logical Volume Device Combined Info and Status Fields” describes the logical volume
device fields that combine both logical device info and logical device status.

Table C.6 . Logical Volume Device Combined In fo and Status Fields

Logical Volume
Field

Descript ion Field Type

lv_attr Selects according to both logical volume device
info as well as logical volume status.

string

Table C.7, “Logical Volume Device Info Fields” describes the logical volume device info fields and
their field types.

Appendix C. LVM Select ion Crit eria

179

Table C.7. Logical Volume Device In fo Fields

Logical Volume
Field

Descript ion Field Type

lv_kernel_major Currently assigned major number or -1 if logical
volume is not active

number

lv_kernel_minor Currently assigned minor number or -1 if logical
volume is not active

number

lv_kernel_read_ah
ead

Currently-in-use read ahead setting in current
units

size

lv_permissions logical volume permissions string
lv_suspended Set if logical volume is suspended number
lv_live_table Set if logical volume has live table present number
lv_inactive_table Set if logical volume has inactive table present number
lv_device_open Set if logical volume device is open number

Table C.8, “Logical Volume Device Status Fields” describes the logical volume device status fields
and their field types.

Table C.8. Logical Volume Device Status Fields

Logical Volume
Field

Descript ion Field Type

cache_total_block
s

Total cache blocks number

cache_used_blocks Used cache blocks number
cache_dirty_block
s

Dirty cache blocks number

cache_read_hits Cache read hits number
cache_read_misses Cache read misses number
cache_write_hits Cache write hits number
cache_write_misse
s

Cache write misses number

lv_health_status logical volume health status string

Table C.9, “Physical Volume Label Fields” describes the physical volume label fields and their field
types.

Table C.9 . Physical Volume Label Fields

Physical Volume
Field

Descript ion Field Type

pv_fmt Type of metadata string
pv_uuid Unique identifier string
dev_size Size of underlying device in current units size
pv_name Name string
pv_mda_free Free metadata area space on this device in

current units
size

pv_mda_size Size of smallest metadata area on this device in
current units

size

Table C.5, “Logical Volume Fields” describes the physical volume fields and their field types.

Logical Volume Manager Administ rat ion

180

Table C.10. Physical Volume Fields

Physical Volume
Field

Descript ion Field Type

pe_start Offset to the start of data on the underlying
device

number

pv_size Size of physical volume in current units size
pv_free Total amount of unallocated space in current

units
size

pv_used Total amount of allocated space in current units size
pv_attr Various attributes string
pv_allocatable Set if this device can be used for allocation number
pv_exported Set if this device is exported number
pv_missing Set if this device is missing in system number
pv_pe_count Total number of physical extents number
pv_pe_alloc_count Total number of allocated physical extents number
pv_tags Tags, if any string list
pv_mda_count Number of metadata areas on this device number
pv_mda_used_count Number of metadata areas in use on this device number
pv_ba_start Offset to the start of PV Bootloader Area on the

underlying device in current units
size

pv_ba_size Size of PV Bootloader Area in current units size

Table C.11, “Volume Group Fields” describes the volume group fields and their field types.

Table C.11. Volume Group Fields

Volume Group Field Descript ion Field Type
vg_fmt Type of metadata string
vg_uuid Unique identifier string
vg_name Name string
vg_attr Various attributes string
vg_permissions Volume group permissions string
vg_extendable Set if volume group is extendable number
vg_exported Set if volume group is exported number
vg_partial Set if volume group is partial number
vg_allocation_po
licy

Volume group allocation policy string

vg_clustered Set if volume group is clustered number
vg_size Total size of volume group in current units size
vg_free Total amount of free space in current units size
vg_sysid System ID of the volume group indicating which

host owns it
string

vg_systemid System ID of the volume group indicating which
host owns it

string

vg_extent_size Size of physical extents in current units size
vg_extent_count Total number of physical extents number
vg_free_count Total number of unallocated physical extents number
max_lv Maximum number of logical volumes allowed in

volume group or 0 if unlimited
number

Appendix C. LVM Select ion Crit eria

181

max_pv Maximum number of physical volumes allowed
in volume group or 0 if unlimited

number

pv_count Number of physical volumes number
lv_count Number of logical volumes number
snap_count Number of snapshots number
vg_seqno Revision number of internal metadata —

incremented whenever it changes
number

vg_tags Tags, if any string list
vg_profile Configuration profile attached to this volume

group
string

vg_mda_count Number of metadata areas on this volume group number
vg_mda_used_count Number of metadata areas in use on this volume

group
number

vg_mda_free Free metadata area space for this volume group
in current units

size

vg_mda_size Size of smallest metadata area for this volume
group in current units

size

vg_mda_copies Target number of in use metadata areas in the
volume group

number

Volume Group Field Descript ion Field Type

Table C.12, “Logical Volume Segment Fields” describes the logical volume segment fields and their
field types.

Table C.12. Logical Volume Segment Fields

Logical Volume
Segment Field

Descript ion Field Type

segtype Type of logical volume segment string
stripes Number of stripes or mirror legs number
stripesize For stripes, amount of data placed on one

device before switching to the next
size

stripe_size For stripes, amount of data placed on one
device before switching to the next

size

regionsize For mirrors, the unit of data copied when
synchronizing devices

size

region_size For mirrors, the unit of data copied when
synchronizing devices

size

chunksize For snapshots, the unit of data used when
tracking changes

size

chunk_size For snapshots, the unit of data used when
tracking changes

size

thin_count For thin pools, the number of thin volumes in
this pool

number

discards For thin pools, how discards are handled string
cachemode For cache pools, how writes are cached string
zero For thin pools, if zeroing is enabled number
transaction_id For thin pools, the transaction id number
thin_id For thin volumes, the thin device id number
seg_start Offset within the logical volume to the start of the

segment in current units
size

Logical Volume Manager Administ rat ion

182

seg_start_pe Offset within the logical volume to the start of the
segment in physical extents.

number

seg_size Size of segment in current units size
seg_size_pe Size of segment in physical extents size
seg_tags Tags, if any string list
seg_pe_ranges Ranges of physical extents of underlying

devices in command line format
string

devices Underlying devices used with starting extent
numbers

string

seg_monitor dmeventd monitoring status of the segment string
cache_policy The cache policy (cached segments only) string
cache_settings Cache settings/parameters (cached segments

only)
string list

Logical Volume
Segment Field

Descript ion Field Type

Table C.13, “Physical Volume Segment Fields” describes the physical volume segment fields and
their field types.

Table C.13. Physical Volume Segment Fields

Physical Volume
Segment Field

Descript ion Field Type

pvseg_start Physical extent number of start of segment number
pvseg_size Number of extents in segment number

Table C.14, “Selection Criteria Synonyms” lists the synonyms you can use for field values. These
synonyms can be used in selection criteria as well as for values just like their original values. In this
table, a field value of "" indicates a blank string, which can be matched by specifying -S
'field_name=""'.

In this table, a field indicated by 0 or 1 indicates a binary value. You can specify a --binary option
for reporting tools which causes binary fields to display 0 or 1 instead of what is indicated in this
table as "some text" or "" .

Table C.14 . Select ion Criteria Synonyms

Field Field Value Synonyms
pv_allocatable allocatable 1
pv_allocatable "" 0
pv_exported exported 1
pv_exported "" 0
pv_missing missing 1
pv_missing "" 0
vg_extendable extendable 1
vg_extendable "" 0
vg_exported exported 1
vg_exported "" 0
vg_partial partial 1
vg_partial "" 0
vg_clustered clustered 1
vg_clustered "" 0

Appendix C. LVM Select ion Crit eria

183

vg_permissions writable rw, read-write
vg_permissions read-only r, ro
vg_mda_copies unmanaged unknown, undefined, undef, -1
lv_initial_image_sync initial image sync sync, 1
lv_initial_image_sync "" 0
lv_image_synced image synced synced, 1
lv_image_synce "" 0
lv_merging merging 1
lv_merging "" 0
lv_converting converting 1
lv_converting "" 0
lv_allocation_locked allocation locked locked, 1
lv_allocation_locked "" 0
lv_fixed_minor fixed minor fixed, 1
lv_fixed_minor "" 0
lv_active_locally active locally active, locally, 1
lv_active_locally "" 0
lv_active_remotely active remotely active, remotely, 1
lv_active_remotely "" 0
lv_active_exclusively active exclusively active, exclusively, 1
lv_active_exclusively "" 0
lv_merge_failed merge failed failed, 1
lv_merge_failed "" 0
lv_snapshot_invalid snapshot invalid invalid, 1
lv_snapshot_invalid "" 0
lv_suspended suspended 1
lv_suspended "" 0
lv_live_table live table present live table, live, 1
lv_live_table "" 0
lv_inactive_table inactive table present inactive table, inactive, 1
lv_inactive_table "" 0
lv_device_open open 1
lv_device_open "" 0
lv_skip_activation skip activation skip, 1
lv_skip_activation "" 0
zero zero 1
zero "" 0
lv_permissions writable rw, read-write
lv_permissions read-only r, ro
lv_permissions read-only-override ro-override, r-override, R
lv_when_full error error when full, error if no

space
lv_when_full queue queue when full, queue if no

space
lv_when_full "" undefined
cache_policy "" undefined
seg_monitor "" undefined
lv_health_status "" undefined

Field Field Value Synonyms

Logical Volume Manager Administ rat ion

184

C.4. Specifying T ime Values

When specifying time values for LVM selection, you can use either a standardized time specification
format or a more free-form specification, as described in Section C.4.1, “Standard time selection
format” and Section C.4.2, “Freeform time selection format” .

You can specify the way time values are displayed with the report/time format configuration option in
the /etc/lvm/lvm.conf configuration file. Information on specifying this option is provided in the
lvm.conf file.

When specifying time values, you can use the comparison operator aliases since, after, until ,
and before, as described in Table C.3, “Selection Criteria Comparison Operators” .

C.4 .1. Standard t ime select ion format

You can specify time values for LVM selection in the following format.

date time timezone

Table C.15, “Time Specification Formats” summarizes the formats you can use when specifying these
time values.

Table C.15. T ime Specif icat ion Formats

Field Field Value
date YYYY-MM-DD

YYYY-MM, auto DD=1

YYYY, auto MM=01 and DD=01

time hh:mm:ss

hh:mm, auto ss=0

hh, auto mm=0, auto ss=0

timezone (always with
+ or - sign)

+hh:mm or -hh:mm

+hh or -hh

The full date/time specification is YYYY-MM-DD hh:mm:ss. Users are able to leave date/time parts from
right to left. Whenever these parts are left out, a range is assumed automatically with second
granularity. For example:

"2015-07-07 9:51" means range of "2015-07-07 9:51:00" - "2015-07-07 9:51:59"

"2015-07" means range of "2015-07-01 0:00:00" - "2015-07-31 23:59:59"

"2015" means range of "2015-01-01 0:00:00" - "2015-12-31 23:59:59"

The following examples show the date/time specification as used in selection criteria.

Appendix C. LVM Select ion Crit eria

185

lvs -S 'time since "2015-07-07 9:51"'
lvs -S 'time = "2015-07""
lvs -S 'time = "2015"'

C.4 .2. Freeform t ime select ion format

You can specify the date/time specification in LVM selection criteria using the following entitles.

weekday names ("Sunday" - "Saturday" or abbreviated as "Sun" - "Sat")

labels for points in time ("noon", "midnight")

labels for a day relative to current day (" today", "yesterday")

points back in time with relative offset from today (N is a number)

("N" "seconds"/"minutes"/"hours" /"days"/"weeks"/"years" "ago")

("N" "secs"/"mins"/"hrs" ... "ago")

("N" "s" /"m"/"h" ... "ago")

time specification either in hh:mm:ss format or with AM/PM suffixes

month names ("January" - "December" or abbreviated as "Jan" - "Dec")

The following examples the show the freeform date/time specification as used in selection criteria.

lvs -S 'time since "yesterday 9AM"'
lvs -S 'time since "Feb 3 years 2 months ago"'
lvs -S 'time = "February 2015"'
lvs -S 'time since "Jan 15 2015" && time until yesterday'
lvs -S 'time since "today 6AM"'

C.5. Select ion Crit eria Display Examples

This section provides a series of examples showing how to use selection criteria for LVM display
commands. The examples in this section use a system configured with LVM volumes that yield the
following output when selection criteria are not used.

lvs -a -o+layout,role
 LV VG Attr LSize Pool Origin Data% Meta% Layout
Role
 root f1 -wi-ao---- 9.01g linear
public
 swap f1 -wi-ao---- 512.00m linear
public
 [lvol0_pmspare] vg ewi------- 4.00m linear
private, \

pool,spare
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00
thin,sparse public
 lvol2 vg Vwi-a-tz-- 1.00g pool 0.00
thin,sparse public, \

Logical Volume Manager Administ rat ion

186

origin, \

thinorigin
 lvol3 vg Vwi---tz-k 1.00g pool lvol2
thin,sparse public, \

snapshot, \

thinsnapshot
 pool vg twi-aotz-- 100.00m 0.00 1.07
thin,pool private
 [pool_tdata] vg Twi-ao---- 100.00m linear
private, \

thin,pool, \

data
 [pool_tmeta] vg ewi-ao---- 4.00m linear
private, \

thin,pool, \

metadata

The following command displays all logical volumes with " lvol[13]" in their name, using a regular
expression to specify this.

lvs -a -o+layout,role -S 'lv_name=~lvol[13]'
 LV VG Attr LSize Pool Origin Data% Layout Role
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse public
 lvol3 vg Vwi---tz-k 1.00g pool lvol2 thin,sparse
public,snapshot,thinsnapshot

The following command displays all logical volumes greater than 500 megabytes in size.

lvs -a -o+layout,role -S 'lv_size>500m'
 LV VG Attr LSize Pool Origin Data% Layout Role
 root f1 -wi-ao---- 9.01g linear public
 swap f1 -wi-ao---- 512.00m linear public
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse public
 lvol2 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse
public,origin,thinorigin
 lvol3 vg Vwi---tz-k 1.00g pool lvol2 thin,sparse
public,snapshot, \

thinsnapshot

The following command displays all logical volumes that include thin as a logical volume role,
indicating that the logical volume is used in constructing a thin pool. This example uses braces ({}) to
indicate a subset in the display.

lvs -a -o+layout,role -S 'lv_role={thin}'
 LV VG Attr LSize Layout Role
 [pool_tdata] vg Twi-ao---- 100.00m linear private,thin,pool,data

Appendix C. LVM Select ion Crit eria

187

 [pool_tmeta] vg ewi-ao---- 4.00m linear
private,thin,pool,metadata

The following command displays all usable top-level logical volumes, which are the logical volumes
with a role of "public" . If you do not specify braces ({}) in a string list to indicate a subset, it is
assumed by default; specifying lv_role=public is equivalent to specifying lv_role={public}.

lvs -a -o+layout,role -S 'lv_role=public'
 LV VG Attr LSize Pool Origin Data% Layout Role
 root f1 -wi-ao---- 9.01g linear public
 swap f1 -wi-ao---- 512.00m linear public
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse public
 lvol2 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse
public,origin,thinorigin
 lvol3 vg Vwi---tz-k 1.00g pool lvol2 thin,sparse
public,snapshot,thinsnapshot

The following command displays all logical volumes with a thin layout.

lvs -a -o+layout,role -S 'lv_layout={thin}'
 LV VG Attr LSize Pool Origin Data% Meta% Layout Role
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse public
 lvol2 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse
public,origin, \

thinorigin
 lvol3 vg Vwi---tz-k 1.00g pool lvol2 thin,sparse
public,snapshot, \

thinsnapshot
 pool vg twi-aotz-- 100.00m 0.00 1.07 thin,pool
private

The following command displays all logical volumes with a layout field that matches "sparse,thin"
exactly. Note that it is not necessary to specify the string list members for the match to be positive.

lvs -a -o+layout,role -S 'lv_layout=[sparse,thin]'
 LV VG Attr LSize Pool Origin Data% Layout Role
 lvol1 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse public
 lvol2 vg Vwi-a-tz-- 1.00g pool 0.00 thin,sparse
public,origin,thinorigin
 lvol3 vg Vwi---tz-k 1.00g pool lvol2 thin,sparse
public,snapshot,thinsnapshot

The following command displays the logical volume names of the logical volumes that are thin,
sparse logical volumes. Note that the list of fields used for selection criteria do not need to be the
same as the list of fields to display.

lvs -a -o lv_name -S 'lv_layout=[sparse,thin]'
 LV
 lvol1
 lvol2
 lvol3

Logical Volume Manager Administ rat ion

188

C.6. Select ion Crit eria Processing Examples

This section provides a series of examples showing how to use selection criteria in commands that
process LVM logical volumes.

This example shows the initial configuration of a group of logical volumes, including thin snapshots.
Thin snapshots have the "skip activation" flag set by default. This example also includes the logical
volume lvol4 which also has the "skip activation" flag set.

lvs -o name,skip_activation,layout,role
 LV SkipAct Layout Role
 root linear public
 swap linear public
 lvol1 thin,sparse public
 lvol2 thin,sparse public,origin,thinorigin
 lvol3 skip activation thin,sparse public,snapshot,thinsnapshot
 lvol4 skip activation linear public
 pool thin,pool private

The following command removes the skip activation flag from all logical volumes that are thin
snapshots.

lvchange --setactivationskip n -S 'role=thinsnapshot'
 Logical volume "lvol3" changed.

The following command shows the configuration of the logical volumes after executing the
lvchange command. Note that the "skip activation" flag has not been unset from the logical volume
that is not a thin snapshot.

lvs -o name,active,skip_activation,layout,role
 LV Active SkipAct Layout Role
 root active linear public
 swap active linear public
 lvol1 active thin,sparse public
 lvol2 active thin,sparse public,origin,thinorigin
 lvol3 thin,sparse public,snapshot,thinsnapshot
 lvol4 active skip activation linear public
 pool active thin,pool private

The following command shows the configuration of the logical volumes after an additional thin
origin/snapshot volume has been created.

lvs -o name,active,skip_activation,origin,layout,role
 LV Active SkipAct Origin Layout Role
 root active linear public
 swap active linear public
 lvol1 active thin,sparse public
 lvol2 active thin,sparse
public,origin,thinorigin
 lvol3 lvol2 thin,sparse
public,snapshot,thinsnapshot
 lvol4 active skip activation linear public
 lvol5 active thin,sparse

Appendix C. LVM Select ion Crit eria

189

public,origin,thinorigin
 lvol6 lvol5 thin,sparse
public,snapshot,thinsnapshot
 pool active thin,pool private

The following command activates logical volumes that are both thin snapshot volumes and have an
origin volume of lvol2.

lvchange -ay -S 'lv_role=thinsnapshot && origin=lvol2'

lvs -o name,active,skip_activation,origin,layout,role
 LV Active SkipAct Origin Layout Role
 root active linear public
 swap active linear public
 lvol1 active thin,sparse public
 lvol2 active thin,sparse
public,origin,thinorigin
 lvol3 active lvol2 thin,sparse
public,snapshot,thinsnapshot
 lvol4 active skip activation linear public
 lvol5 active thin,sparse
public,origin,thinorigin
 lvol6 lvol5 thin,sparse
public,snapshot,thinsnapshot
 pool active thin,pool private

If you execute a command on a whole item while specifying selection criteria that match an item from
that whole, the entire whole item is processed. For example, if you change a volume group while
selecting one or more items from that volume group, the whole volume group is selected. This
example selects logical volume lvol1, which is part of volume group vg . All of the logical volumes
in volume group vg are processed.

lvs -o name,vg_name
 LV VG
 root fedora
 swap fedora
 lvol1 vg
 lvol2 vg
 lvol3 vg
 lvol4 vg
 lvol5 vg
 lvol6 vg
 pool vg

vgchange -ay -S 'lv_name=lvol1'
 7 logical volume(s) in volume group "vg" now active

The following example shows a more complex selection criteria statement. In this example, all logical
volumes are tagged with mytag if they have a role of origin and are also named lvol[456] or the
logical volume size is more than 5 gigabytes.

lvchange --addtag mytag -S '(role=origin && lv_name=~lvol[456]) ||
lv_size > 5g'
 Logical volume "root" changed.
 Logical volume "lvol5" changed.

Logical Volume Manager Administ rat ion

190

Appendix D. LVM Object Tags

An LVM tag is a word that can be used to group LVM2 objects of the same type together. Tags can be
attached to objects such as physical volumes, volume groups, and logical volumes. Tags can be
attached to hosts in a cluster configuration.

Tags can be given on the command line in place of PV, VG or LV arguments. Tags should be
prefixed with @ to avoid ambiguity. Each tag is expanded by replacing it with all objects possessing
that tag which are of the type expected by its position on the command line.

LVM tags are strings of up to 1024 characters. LVM tags cannot start with a hyphen.

A valid tag can consist of a limited range of characters only. The allowed characters are [A-Za-z0-
9_+.-]. As of the Red Hat Enterprise Linux 6.1 release, the list of allowed characters was extended,
and tags can contain the /, =, !, :, #, and & characters.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are removed
from a volume group; this is because tags are stored as part of the volume group metadata and that
is deleted when a physical volume is removed.

The following command lists all the logical volumes with the database tag.

lvs @database

The following command lists the currently active host tags.

lvm tags

D.1. Adding and Removing Object Tags

To add or delete tags from physical volumes, use the --addtag or --deltag option of the
pvchange command.

To add or delete tags from volume groups, use the --addtag or --deltag option of the vgchange
or vgcreate commands.

To add or delete tags from logical volumes, use the --addtag or --deltag option of the
lvchange or lvcreate commands.

You can specify multiple --addtag and --deltag arguments within a single pvchange,
vgchange, or lvchange command. For example, the following command deletes the tags T9 and
T10 and adds the tags T13 and T14 to the volume group grant.

vgchange --deltag T9 --deltag T10 --addtag T13 --addtag T14 grant

D.2. Host Tags

In a cluster configuration, you can define host tags in the configuration files. If you set hosttags =
1 in the tags section, a host tag is automatically defined using the machine's hos tname. This allows
you to use a common configuration file which can be replicated on all your machines so they hold
identical copies of the file, but the behavior can differ between machines according to the host name.

For information on the configuration files, see Appendix B, The LVM Configuration Files.

Appendix D. LVM Object T ags

191

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file defines
new tags, then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines tag1, and defines tag2 if the
host name is host1.

tags { tag1 { } tag2 { host_list = ["host1"] } }

D.3. Cont rolling Act ivat ion with Tags

You can specify in the configuration file that only certain logical volumes should be activated on that
host. For example, the following entry acts as a filter for activation requests (such as vgchange -
ay) and only activates vg1/lvol0 and any logical volumes or volume groups with the database
tag in the metadata on that host.

activation { volume_list = ["vg1/lvol0", "@database"] }

There is a special match "@*" that causes a match only if any metadata tag matches any host tag on
that machine.

As another example, consider a situation where every machine in the cluster has the following entry
in the configuration file:

tags { hosttags = 1 }

If you want to activate vg1/lvol2 only on host db2, do the following:

1. Run lvchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run lvchange -ay vg1/lvol2.

This solution involves storing host names inside the volume group metadata.

Logical Volume Manager Administ rat ion

192

Appendix E. LVM Volume Group Metadata

The configuration details of a volume group are referred to as the metadata. By default, an identical
copy of the metadata is maintained in every metadata area in every physical volume within the
volume group. LVM volume group metadata is stored as ASCII.

If a volume group contains many physical volumes, having many redundant copies of the metadata
is inefficient. It is possible to create a physical volume without any metadata copies by using the --
metadatacopies 0 option of the pvcreate command. Once you have selected the number of
metadata copies the physical volume will contain, you cannot change that at a later point. Selecting
0 copies can result in faster updates on configuration changes. Note, however, that at all times every
volume group must contain at least one physical volume with a metadata area (unless you are using
the advanced configuration settings that allow you to store volume group metadata in a file system).
If you intend to split the volume group in the future, every volume group needs at least one metadata
copy.

The core metadata is stored in ASCII. A metadata area is a circular buffer. New metadata is appended
to the old metadata and then the pointer to the start of it is updated.

You can specify the size of metadata area with the --metadatasize option of the pvcreate
command. The default size may be too small for volume groups that contain physical volumes and
logical volumes that number in the hundreds.

E.1. The Physical Volume Label

By default, the pvcreate command places the physical volume label in the 2nd 512-byte sector. This
label can optionally be placed in any of the first four sectors, since the LVM tools that scan for a
physical volume label check the first 4 sectors. The physical volume label begins with the string
LABELONE.

The physical volume label contains:

Physical volume UUID

Size of block device in bytes

NULL-terminated list of data area locations

NULL-terminated lists of metadata area locations

Metadata locations are stored as offset and size (in bytes). There is room in the label for about 15
locations, but the LVM tools currently use 3: a single data area plus up to two metadata areas.

E.2. Metadata Contents

The volume group metadata contains:

Information about how and when it was created

Information about the volume group

The volume group information contains:

Name and unique id

A version number which is incremented whenever the metadata gets updated

Appendix E. LVM Volume Group Met adat a

193

Any properties, such as: read/write or resizable

Any administrative limit on the number of physical volumes and logical volumes it may contain

The extent size (in units of sectors which are defined as 512 bytes)

An unordered list of physical volumes making up the volume group, each with:

Its UUID, used to determine the block device containing it

Any properties, such as whether the physical volume is allocatable

The offset to the start of the first extent within the physical volume (in sectors)

The number of extents

An unordered list of logical volumes, each consisting of

An ordered list of logical volume segments. For each segment the metadata includes a
mapping applied to an ordered list of physical volume segments or logical volume segments

E.3. Sample Metadata

The following shows an example of LVM volume group metadata for a volume group called myvg .

Generated by LVM2: Tue Jan 30 16:28:15 2007

contents = "Text Format Volume Group"
version = 1

description = "Created *before* executing 'lvextend -L+5G /dev/myvg/mylv
/dev/sdc'"

creation_host = "tng3-1" # Linux tng3-1 2.6.18-8.el5 #1 SMP Fri
Jan 26 14:15:21 EST 2007 i686
creation_time = 1170196095 # Tue Jan 30 16:28:15 2007

myvg {
 id = "0zd3UT-wbYT-lDHq-lMPs-EjoE-0o18-wL28X4"
 seqno = 3
 status = ["RESIZEABLE", "READ", "WRITE"]
 extent_size = 8192 # 4 Megabytes
 max_lv = 0
 max_pv = 0

 physical_volumes {

 pv0 {
 id = "ZBW5qW-dXF2-0bGw-ZCad-2RlV-phwu-1c1RFt"
 device = "/dev/sda" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

Logical Volume Manager Administ rat ion

194

 pv1 {
 id = "ZHEZJW-MR64-D3QM-Rv7V-Hxsa-zU24-wztY19"
 device = "/dev/sdb" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

 pv2 {
 id = "wCoG4p-55Ui-9tbp-VTEA-jO6s-RAVx-UREW0G"
 device = "/dev/sdc" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }

 pv3 {
 id = "hGlUwi-zsBg-39FF-do88-pHxY-8XA2-9WKIiA"
 device = "/dev/sdd" # Hint only

 status = ["ALLOCATABLE"]
 dev_size = 35964301 # 17.1491 Gigabytes
 pe_start = 384
 pe_count = 4390 # 17.1484 Gigabytes
 }
 }
 logical_volumes {

 mylv {
 id = "GhUYSF-qVM3-rzQo-a6D2-o0aV-LQet-Ur9OF9"
 status = ["READ", "WRITE", "VISIBLE"]
 segment_count = 2

 segment1 {
 start_extent = 0
 extent_count = 1280 # 5 Gigabytes

 type = "striped"
 stripe_count = 1 # linear

 stripes = [
 "pv0", 0
]
 }
 segment2 {
 start_extent = 1280
 extent_count = 1280 # 5 Gigabytes

 type = "striped"
 stripe_count = 1 # linear

 stripes = [

Appendix E. LVM Volume Group Met adat a

195

 "pv1", 0
]
 }
 }
 }
}

Logical Volume Manager Administ rat ion

196

Appendix F. Revision History

Revision 1.0-11 Wed Jul 19 2017 Steven Levine
Document version for 7.4 GA publication.

Revision 1.0-9 Mon May 15 2017 Steven Levine
Preparing document for 7.4 Beta publication.

Revision 1.0-7 Mon Mar 27 2017 Steven Levine
Updated Version for 7.3

Revision 1.0-5 Mon Oct 17 2016 Steven Levine
Version for 7.3 GA publication

Revision 1.0-4 Wed Aug 17 2016 Steven Levine
Preparing document for 7.3 Beta publication.

Revision 0.3-4 Mon Nov 9 2015 Steven Levine
Preparing document for 7.2 GA publication

Revision 0.3-2 Wed Aug 19 2015 Steven Levine
Preparing document for 7.2 Beta publication.

Revision 0.2-7 Mon Feb 16 2015 Steven Levine
Version for 7.1 GA release

Revision 0.2-6 Thu Dec 11 2014 Steven Levine
Version for 7.1 Beta release

Revision 0.1-22 Mon Jun 2 2014 Steven Levine
Version for 7.0 GA release

Revision 0.1-1 Wed Jan 16 2013 Steven Levine
Branched from the Red Hat Enterprise Linux 6 version of the document.

Index

Symbols
/l ib /udev/ru les.d d irectory, udev In tegrat ion with the Device Mapper

A
act ivat ing logical vo lumes

- individual nodes, Activating Logical Volumes on Individual Nodes in a Cluster

act ivat ing volume groups, Act ivat ing and Deact ivat ing Volume Groups

administ rat ive procedures, LVM Administ rat ion Overview

allocat ion, LVM Allocat ion
- policy, Creating Volume Groups

Appendix F. Revision Hist ory

197

- preventing, Preventing Allocation on a Physical Volume

archive f ile, Logical Volume Backup, Backing Up Volume Group Metadata

B
backup

- file, Logical Volume Backup
- metadata, Logical Volume Backup, Backing Up Volume Group Metadata

backup f ile, Backing Up Volume Group Metadata

block device
- scanning, Scanning for Block Devices

C
cache f ile

- building, Scanning Disks for Volume Groups to Build the Cache File

cache logical vo lume
- creation, Creating LVM Cache Logical Volumes

cache volumes, Cache Volumes

cluster environment , The Clustered Logical Volume Manager (CLVM) , Creat ing LVM
Volumes in a Cluster

CLVM
- definition, The Clustered Logical Volume Manager (CLVM)

clvmd daemon, The Clustered Logical Volume Manager (CLVM)

command line units, Using CLI Commands

conf igurat ion examples, LVM Conf igurat ion Examples

creat ing
- logical volume, Creating Linear Logical Volumes
- logical volume, example, Creating an LVM Logical Volume on Three Disks
- LVM volumes in a cluster, Creating LVM Volumes in a Cluster
- physical volumes, Creating Physical Volumes
- striped logical volume, example, Creating a Striped Logical Volume
- volume group, clustered, Creating Volume Groups in a Cluster
- volume groups, Creating Volume Groups

creat ing LVM volumes
- overview, Logical Volume Creation Overview

D
data relocat ion, online, Online Data Relocat ion

deact ivat ing volume groups, Act ivat ing and Deact ivat ing Volume Groups

device numbers
- major, Persistent Device Numbers
- minor, Persistent Device Numbers
- persistent, Persistent Device Numbers

device path names, Using CLI Commands

device scan f ilters, Contro lling LVM Device Scans with Filters

Logical Volume Manager Administ rat ion

198

device siz e, maximum, Creat ing Volume Groups

device special f i le d irectory, Creat ing Volume Groups

display
- sorting output, Sorting LVM Reports

displaying
- logical volumes, Displaying Logical Volumes, The lvs Command
- physical volumes, Displaying Physical Volumes, The pvs Command
- volume groups, Displaying Volume Groups, The vgs Command

E
extent

- allocation, Creating Volume Groups, LVM Allocation
- definition, Volume Groups, Creating Volume Groups

F
failed devices

- displaying, Displaying Information on Failed Devices

features, new and changed, New and Changed Features

f ile system
- growing on a logical volume, Growing a File System on a Logical Volume

f i lters, Contro lling LVM Device Scans with Filters

G
growing f ile system

- logical volume, Growing a File System on a Logical Volume

H
help d isplay, Using CLI Commands

I
in it ializ ing

- partitions, Initializing Physical Volumes
- physical volumes, Initializing Physical Volumes

Insuf f icient Free Extents message, Insuf f icient Free Extents for a Logical Volume

L
l inear logical vo lume

- converting to mirrored, Changing Mirrored Volume Configuration
- creation, Creating Linear Logical Volumes
- definition, Linear Volumes

logging, Logging

logical vo lume
- activation, Controlling Logical Volume Activation
- administration, general, Logical Volume Administration
- cache, Creating LVM Cache Logical Volumes
- changing parameters, Changing the Parameters of a Logical Volume Group
- creation, Creating Linear Logical Volumes

Appendix F. Revision Hist ory

199

- creation example, Creating an LVM Logical Volume on Three Disks
- definition, Logical Volumes, LVM Logical Volumes
- displaying, Displaying Logical Volumes, Customized Reporting for LVM, The lvs
Command
- exclusive access, Activating Logical Volumes on Individual Nodes in a Cluster
- extending, Growing Logical Volumes
- growing, Growing Logical Volumes
- historical, Tracking and Displaying Historical Logical Volumes (Red Hat Enterprise
Linux 7.3 and Later)
- linear, Creating Linear Logical Volumes
- local access, Activating Logical Volumes on Individual Nodes in a Cluster
- lvs display arguments, The lvs Command
- mirrored, Creating Mirrored Volumes
- reducing, Reducing Logical Volumes, Shrinking Logical Volumes
- removing, Removing Logical Volumes
- renaming, Renaming Logical Volumes
- shrinking, Shrinking Logical Volumes
- snapshot, Creating Snapshot Volumes
- striped, Creating Striped Volumes
- thinly-provisioned, Creating Thinly-Provisioned Logical Volumes
- thinly-provisioned snapshot, Creating Thinly-Provisioned Snapshot Volumes

lvchange command, Changing the Parameters of a Logical Volume Group

lvconvert command, Changing Mirrored Volume Conf igurat ion

lvcreate command, Creat ing Linear Logical Volumes

lvdisplay command, Displaying Logical Volumes

lvextend command, Growing Logical Volumes

LVM
- architecture overview, LVM Architecture Overview
- clustered, The Clustered Logical Volume Manager (CLVM)
- components, LVM Architecture Overview, LVM Components
- custom report format, Customized Reporting for LVM
- directory structure, Creating Volume Groups
- help, Using CLI Commands
- label, Physical Volumes
- logging, Logging
- logical volume administration, Logical Volume Administration
- physical volume administration, Physical Volume Administration
- physical volume, definition, Physical Volumes
- volume group, definition, Volume Groups

lvmdiskscan command, Scanning for Block Devices

lvmetad daemon, The Metadata Daemon (lvmetad)

lvreduce command, Reducing Logical Volumes, Shrinking Logical Volumes

lvremove command, Removing Logical Volumes

lvrename command, Renaming Logical Volumes

lvs command, Customiz ed Report ing for LVM, The lvs Command
- display arguments, The lvs Command

lvscan command, Displaying Logical Volumes

M

Logical Volume Manager Administ rat ion

200

man page d isplay, Using CLI Commands

metadata
- backup, Logical Volume Backup, Backing Up Volume Group Metadata
- recovery, Recovering Physical Volume Metadata

metadata daemon, The Metadata Daemon (lvmetad)

mirrored logical vo lume
- clustered, Creating a Mirrored LVM Logical Volume in a Cluster
- converting to linear, Changing Mirrored Volume Configuration
- creation, Creating Mirrored Volumes
- failure policy, Mirrored Logical Volume Failure Policy
- failure recovery, Recovering from LVM Mirror Failure
- reconfiguration, Changing Mirrored Volume Configuration

mirror_image_fault_policy conf igurat ion parameter, Mirrored Logical Volume
Failure Policy

mirror_log_fault_policy conf igurat ion parameter, Mirrored Logical Volume Failure
Policy

O
online data relocat ion, Online Data Relocat ion

overview
- features, new and changed, New and Changed Features

P
part it ion type, set t ing, Set t ing the Part it ion Type

part it ions
- multiple, Multiple Partitions on a Disk

path names, Using CLI Commands

persistent device numbers, Persistent Device Numbers

physical extent
- preventing allocation, Preventing Allocation on a Physical Volume

physical vo lume
- adding to a volume group, Adding Physical Volumes to a Volume Group
- administration, general, Physical Volume Administration
- creating, Creating Physical Volumes
- definition, Physical Volumes
- display, The pvs Command
- displaying, Displaying Physical Volumes, Customized Reporting for LVM
- illustration, LVM Physical Volume Layout
- initializing, Initializing Physical Volumes
- layout, LVM Physical Volume Layout
- pvs display arguments, The pvs Command
- recovery, Replacing a Missing Physical Volume
- removing, Removing Physical Volumes
- removing from volume group, Removing Physical Volumes from a Volume Group
- removing lost volume, Removing Lost Physical Volumes from a Volume Group
- resizing, Resizing a Physical Volume

pvdisplay command, Displaying Physical Volumes

Appendix F. Revision Hist ory

201

pvmove command, Online Data Relocat ion

pvremove command, Removing Physical Volumes

pvresiz e command, Resiz ing a Physical Volume

pvs command, Customiz ed Report ing for LVM
- display arguments, The pvs Command

pvscan command, Displaying Physical Volumes

R
RAID logical vo lume, RAID Logical Volumes

- extending, Extending a RAID Volume
- growing, Extending a RAID Volume

reducing
- logical volume, Reducing Logical Volumes

removing
- disk from a logical volume, Removing a Disk from a Logical Volume
- logical volume, Removing Logical Volumes
- physical volumes, Removing Physical Volumes

renaming
- logical volume, Renaming Logical Volumes
- volume group, Renaming a Volume Group

report format , LVM devices, Customiz ed Report ing for LVM

resiz ing
- physical volume, Resizing a Physical Volume

ru les.d d irectory, udev In tegrat ion with the Device Mapper

S
scanning

- block devices, Scanning for Block Devices

scanning devices, f i lters, Contro lling LVM Device Scans with Filters

snapshot logical vo lume
- creation, Creating Snapshot Volumes

snapshot volume
- definition, Snapshot Volumes

st riped logical vo lume
- creation, Creating Striped Volumes
- creation example, Creating a Striped Logical Volume
- definition, Striped Logical Volumes
- extending, Extending a Striped Volume
- growing, Extending a Striped Volume

T
th in snapshot volume, Thin ly-Provisioned Snapshot Volumes

thin volume

Logical Volume Manager Administ rat ion

202

- creation, Creating Thinly-Provisioned Logical Volumes

th in ly-provisioned logical vo lume, Thin ly-Provisioned Logical Volumes (Thin
Volumes)

- creation, Creating Thinly-Provisioned Logical Volumes

th in ly-provisioned snapshot logical vo lume
- creation, Creating Thinly-Provisioned Snapshot Volumes

th in ly-provisioned snapshot volume, Thin ly-Provisioned Snapshot Volumes

troubleshoot ing, LVM Troubleshoot ing

U
udev device manager, Device Mapper Support for the udev Device Manager

udev ru les, udev In tegrat ion with the Device Mapper

units, command line, Using CLI Commands

V
verbose output , Using CLI Commands

vgcfgbackup command, Backing Up Volume Group Metadata

vgcfgrestore command, Backing Up Volume Group Metadata

vgchange command, Changing the Parameters of a Volume Group

vgcreate command, Creat ing Volume Groups, Creat ing Volume Groups in a Cluster

vgdisplay command, Displaying Volume Groups

vgexport command, Moving a Volume Group to Another System

vgextend command, Adding Physical Volumes to a Volume Group

vgimport command, Moving a Volume Group to Another System

vgmerge command, Combining Volume Groups

vgmknodes command, Recreat ing a Volume Group Directory

vgreduce command, Removing Physical Volumes f rom a Volume Group

vgrename command, Renaming a Volume Group

vgs command, Customiz ed Report ing for LVM
- display arguments, The vgs Command

vgscan command, Scanning Disks for Volume Groups to Build the Cache File

vgsplit command, Split t ing a Volume Group

volume group
- activating, Activating and Deactivating Volume Groups
- administration, general, Volume Group Administration
- changing parameters, Changing the Parameters of a Volume Group
- combining, Combining Volume Groups
- creating, Creating Volume Groups
- creating in a cluster, Creating Volume Groups in a Cluster
- deactivating, Activating and Deactivating Volume Groups
- definition, Volume Groups
- displaying, Displaying Volume Groups, Customized Reporting for LVM, The vgs
Command
- extending, Adding Physical Volumes to a Volume Group
- growing, Adding Physical Volumes to a Volume Group

Appendix F. Revision Hist ory

203

- merging, Combining Volume Groups
- moving between systems, Moving a Volume Group to Another System
- reducing, Removing Physical Volumes from a Volume Group
- removing, Removing Volume Groups
- renaming, Renaming a Volume Group
- shrinking, Removing Physical Volumes from a Volume Group
- splitting, Splitting a Volume Group

- example procedure, Splitting a Volume Group

- vgs display arguments, The vgs Command

Logical Volume Manager Administ rat ion

204

	Table of Contents
	Chapter 1. The LVM Logical Volume Manager
	1.1. New and Changed Features
	1.1.1. New and Changed Features for Red Hat Enterprise Linux 7.1
	1.1.2. New and Changed Features for Red Hat Enterprise Linux 7.2
	1.1.3. New and Changed Features for Red Hat Enterprise Linux 7.3
	1.1.4. New and Changed Features for Red Hat Enterprise Linux 7.4

	1.2. Logical Volumes
	1.3. LVM Architecture Overview
	1.4. The Clustered Logical Volume Manager (CLVM)
	1.5. Document Overview

	Chapter 2. LVM Components
	2.1. Physical Volumes
	2.1.1. LVM Physical Volume Layout
	2.1.2. Multiple Partitions on a Disk

	2.2. Volume Groups
	2.3. LVM Logical Volumes
	2.3.1. Linear Volumes
	2.3.2. Striped Logical Volumes
	2.3.3. RAID Logical Volumes
	2.3.4. Thinly-Provisioned Logical Volumes (Thin Volumes)
	2.3.5. Snapshot Volumes
	2.3.6. Thinly-Provisioned Snapshot Volumes
	2.3.7. Cache Volumes

	Chapter 3. LVM Administration Overview
	3.1. Creating LVM Volumes in a Cluster
	3.2. Logical Volume Creation Overview
	3.3. Growing a File System on a Logical Volume
	3.4. Logical Volume Backup
	3.5. Logging
	3.6. The Metadata Daemon (lvmetad)
	3.7. Displaying LVM Information with the lvm Command

	Chapter 4. LVM Administration with CLI Commands
	4.1. Using CLI Commands
	4.2. Physical Volume Administration
	4.2.1. Creating Physical Volumes
	4.2.1.1. Setting the Partition Type
	4.2.1.2. Initializing Physical Volumes
	4.2.1.3. Scanning for Block Devices

	4.2.2. Displaying Physical Volumes
	4.2.3. Preventing Allocation on a Physical Volume
	4.2.4. Resizing a Physical Volume
	4.2.5. Removing Physical Volumes

	4.3. Volume Group Administration
	4.3.1. Creating Volume Groups
	4.3.2. LVM Allocation
	4.3.3. Creating Volume Groups in a Cluster
	4.3.4. Adding Physical Volumes to a Volume Group
	4.3.5. Displaying Volume Groups
	4.3.6. Scanning Disks for Volume Groups to Build the Cache File
	4.3.7. Removing Physical Volumes from a Volume Group
	4.3.8. Activating and Deactivating Volume Groups
	4.3.9. Changing the Parameters of a Volume Group
	4.3.10. Removing Volume Groups
	4.3.11. Splitting a Volume Group
	4.3.12. Combining Volume Groups
	4.3.13. Backing Up Volume Group Metadata
	4.3.14. Renaming a Volume Group
	4.3.15. Moving a Volume Group to Another System
	4.3.16. Recreating a Volume Group Directory

	4.4. Logical Volume Administration
	4.4.1. Creating Linear Logical Volumes
	4.4.2. Creating Striped Volumes
	4.4.3. RAID Logical Volumes
	4.4.3.1. Creating RAID0 Volumes (Red Hat Enterprise Linux 7.3 and Later)
	4.4.3.2. Converting a Linear Device to a RAID Device
	4.4.3.3. Converting an LVM RAID1 Logical Volume to an LVM Linear Logical Volume
	4.4.3.4. Converting a Mirrored LVM Device to a RAID1 Device
	4.4.3.5. Resizing a RAID Logical Volume
	4.4.3.6. Changing the Number of Images in an Existing RAID1 Device
	4.4.3.7. Splitting off a RAID Image as a Separate Logical Volume
	4.4.3.8. Splitting and Merging a RAID Image
	4.4.3.9. Setting a RAID fault policy
	4.4.3.10. Replacing a RAID device
	4.4.3.11. Scrubbing a RAID Logical Volume
	4.4.3.12. RAID Takeover (Red Hat Enterprise Linux 7.4 and Later)
	4.4.3.13. Reshaping a RAID Logical Volume (Red Hat Enterprise Linux 7.4 and Later)
	4.4.3.14. Controlling I/O Operations on a RAID1 Logical Volume
	4.4.3.15. Changing the region size on a RAID Logical Volume (Red Hat Enterprise Linux 7.4 and later)

	4.4.4. Creating Mirrored Volumes
	4.4.4.1. Mirrored Logical Volume Failure Policy
	4.4.4.2. Splitting Off a Redundant Image of a Mirrored Logical Volume
	4.4.4.3. Repairing a Mirrored Logical Device
	4.4.4.4. Changing Mirrored Volume Configuration

	4.4.5. Creating Thinly-Provisioned Logical Volumes
	4.4.6. Creating Snapshot Volumes
	4.4.7. Creating Thinly-Provisioned Snapshot Volumes
	4.4.8. Creating LVM Cache Logical Volumes
	4.4.9. Merging Snapshot Volumes
	4.4.10. Persistent Device Numbers
	4.4.11. Reducing Logical Volumes
	4.4.12. Changing the Parameters of a Logical Volume Group
	4.4.13. Renaming Logical Volumes
	4.4.14. Removing Logical Volumes
	4.4.15. Displaying Logical Volumes
	4.4.16. Growing Logical Volumes
	4.4.16.1. Extending a Striped Volume
	4.4.16.2. Extending a RAID Volume
	4.4.16.3. Extending a Logical Volume with the cling Allocation Policy

	4.4.17. Shrinking Logical Volumes
	4.4.18. Controlling Logical Volume Activation
	4.4.19. Tracking and Displaying Historical Logical Volumes (Red Hat Enterprise Linux 7.3 and Later)

	4.5. Controlling LVM Device Scans with Filters
	4.6. Online Data Relocation
	4.7. Activating Logical Volumes on Individual Nodes in a Cluster
	4.8. Customized Reporting for LVM
	4.8.1. Format Control
	4.8.2. Object Display Fields
	The pvs Command
	The vgs Command
	The lvs Command

	4.8.3. Sorting LVM Reports
	4.8.4. Specifying Units
	4.8.5. JSON Format Output (Red Hat Enterprise Linux 7.3 and later)
	4.8.6. Command Log Reporting (Red Hat Enterprise Linux 7.3 and later)

	Chapter 5. LVM Configuration Examples
	5.1. Creating an LVM Logical Volume on Three Disks
	5.2. Creating a Striped Logical Volume
	5.3. Splitting a Volume Group
	5.4. Removing a Disk from a Logical Volume
	5.4.1. Moving Extents to Existing Physical Volumes
	5.4.2. Moving Extents to a New Disk

	5.5. Creating a Mirrored LVM Logical Volume in a Cluster

	Chapter 6. LVM Troubleshooting
	6.1. Troubleshooting Diagnostics
	6.2. Displaying Information on Failed Devices
	6.3. Recovering from LVM Mirror Failure
	6.4. Recovering Physical Volume Metadata
	6.5. Replacing a Missing Physical Volume
	6.6. Removing Lost Physical Volumes from a Volume Group
	6.7. Insufficient Free Extents for a Logical Volume
	6.8. Duplicate PV Warnings for Multipathed Devices
	6.8.1. Root Cause of Duplicate PV Warning
	6.8.2. Duplicate Warnings for Single Paths
	6.8.3. Duplicate Warnings for Multipath Maps

	Appendix A. The Device Mapper
	A.1. Device Table Mappings
	A.1.1. The linear Mapping Target
	A.1.2. The striped Mapping Target
	A.1.3. The mirror Mapping Target
	A.1.4. The snapshot and snapshot-origin Mapping Targets
	A.1.5. The error Mapping Target
	A.1.6. The zero Mapping Target
	A.1.7. The multipath Mapping Target
	A.1.8. The crypt Mapping Target

	A.2. The dmsetup Command
	A.2.1. The dmsetup info Command
	A.2.2. The dmsetup ls Command
	A.2.3. The dmsetup status Command
	A.2.4. The dmsetup deps Command

	A.3. Device Mapper Support for the udev Device Manager
	A.3.1. udev Integration with the Device Mapper
	A.3.2. Commands and Interfaces that Support udev

	Appendix B. The LVM Configuration Files
	B.1. The LVM Configuration Files
	B.2. The lvmconfig Command
	B.3. LVM Profiles
	B.4. Sample lvm.conf File

	Appendix C. LVM Selection Criteria
	C.1. Selection Criteria Field Types
	C.2. Selection Criteria Operators
	C.3. Selection Criteria Fields
	C.4. Specifying Time Values
	C.4.1. Standard time selection format
	C.4.2. Freeform time selection format

	C.5. Selection Criteria Display Examples
	C.6. Selection Criteria Processing Examples

	Appendix D. LVM Object Tags
	D.1. Adding and Removing Object Tags
	D.2. Host Tags
	D.3. Controlling Activation with Tags

	Appendix E. LVM Volume Group Metadata
	E.1. The Physical Volume Label
	E.2. Metadata Contents
	E.3. Sample Metadata

	Appendix F. Revision History
	Index

